Applications of the classical umbral calculus

Abstract.We describe applications of the classical umbral calculus to bilinear generating functions for polynomial sequences, identities for Bernoulli and related numbers, and Kummer congruences.

[1]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[2]  Mourad E. H. Ismail,et al.  More Orthogonal Polynomials as Moments , 1998 .

[3]  G. Rota,et al.  Finite operator calculus , 1975 .

[4]  J. Levine,et al.  Combinatorial and Umbral Methods for Orthogonal Polynomials , 2001 .

[5]  Jiang Zeng,et al.  Further results on the euler and Genocchi numbers , 1994 .

[6]  I. Gessel Counting three-line Latin rectangles , 1986 .

[7]  Dominique Foata,et al.  Some Hermite polynomial identities and their combinatorics , 1981 .

[8]  D. Zagier A modified Bernoulli number. , 1998 .

[9]  Jiang Zeng,et al.  On a q-sequence that generalizes the median Genocchi numbers , 1999 .

[10]  D. Ray-Chaudhuri Relations between combinatorics and other parts of mathematics , 1979 .

[11]  M. Ismail,et al.  q-Integral and Moment Representations for q-Orthogonal Polynomials , 2002, Canadian Journal of Mathematics.

[12]  I. Gessel Some Congruences for Generalized Euler Numbers , 1983, Canadian Journal of Mathematics.

[13]  A. Robert,et al.  Some congruences concerning the Bell numbers , 1996 .

[14]  R. Askey Orthogonal Polynomials and Special Functions , 1975 .

[15]  A. Guinand The Umbral Method: A Survey of Elementary Mnemonic and Manipulative Uses , 1979 .

[16]  D. Dumont,et al.  Derangements and Genocchi numbers , 1994 .

[17]  D. Barsky Congruences pour les nombres de Genocchi de 2e espèce , 1981 .

[18]  G. Rota The Number of Partitions of a Set , 1964 .

[19]  G. Andrews The Theory of Partitions: Frontmatter , 1976 .

[20]  Dominique Dumont,et al.  Dérangements et nombres de Genocchi , 1994, Discret. Math..

[21]  Gian-Carlo Rota,et al.  Mathematical Essays in honor of Gian-Carlo Rota , 1998 .

[22]  G. Andrews,et al.  Generalizations of Cauchy’s summation theorem for Schur functions , 1988 .

[23]  Mourad E. H. Ismail,et al.  A -umbral calculus , 1981 .

[24]  Gian-Carlo Rota,et al.  The classical umbral calculus , 1994 .

[25]  L. Carlitz Kummer's congruences (mod 2r) , 1959 .

[26]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[27]  Masanobu Kaneko,et al.  A Recurrence Formula for the Bernoulli Numbers , 1995 .

[28]  Ira M. Gessel,et al.  Short Proofs of Saalschütz's and Dixon's Theorems , 1985, Journal of combinatorial theory. Series A.

[29]  L. Carlitz Congruences for generalized Bell and Stirling numbers , 1955 .

[30]  J. S. Frame Bernoulli Numbers Modulo 27000 , 1961 .

[31]  Jiang Zeng,et al.  The q -Stirling numbers, continued fractions and the q -Charlier and q -Laguerre polynomials , 1995 .

[32]  Jeremy Rouse,et al.  Combinatorial Proofs of Congruences , 2003 .

[33]  Mourad E. H. Ismail,et al.  Classical Orthogonal Polynomials as Moments , 1997, Canadian Journal of Mathematics.

[34]  E. Bell,et al.  Postulational Bases for the Umbral Calculus , 1940 .

[35]  D. Zeilberger A Heterosexual Mehler Formula for the Straight Hermite Polynomials (A La Foata) , 1998, math/9807074.

[36]  G. Doetsch,et al.  Integraleigenschaften der Hermiteschen Polynome , 1930 .

[37]  Dominique Foata,et al.  A Combinatorial Proof of the Mehler Formula , 1978, J. Comb. Theory A.

[38]  J. Touchard,et al.  Nombres Exponentiels Et Nombres De Bernoulli , 1956, Canadian Journal of Mathematics.

[39]  Germain Kreweras,et al.  Sur les Permutations Comptées par les Nombres de Genocchi de 1-ière et 2-ième Espèce , 1997, Eur. J. Comb..

[40]  A. D. Bucchianicoy An Introduction to Umbral Calculus , 1998 .

[41]  P. A. B. Pleasants,et al.  Arithmetic properties of Bell numbers to a composite modulus I , 1979 .