Applications of the classical umbral calculus
暂无分享,去创建一个
[1] R. Stanley. What Is Enumerative Combinatorics , 1986 .
[2] Mourad E. H. Ismail,et al. More Orthogonal Polynomials as Moments , 1998 .
[3] G. Rota,et al. Finite operator calculus , 1975 .
[4] J. Levine,et al. Combinatorial and Umbral Methods for Orthogonal Polynomials , 2001 .
[5] Jiang Zeng,et al. Further results on the euler and Genocchi numbers , 1994 .
[6] I. Gessel. Counting three-line Latin rectangles , 1986 .
[7] Dominique Foata,et al. Some Hermite polynomial identities and their combinatorics , 1981 .
[8] D. Zagier. A modified Bernoulli number. , 1998 .
[9] Jiang Zeng,et al. On a q-sequence that generalizes the median Genocchi numbers , 1999 .
[10] D. Ray-Chaudhuri. Relations between combinatorics and other parts of mathematics , 1979 .
[11] M. Ismail,et al. q-Integral and Moment Representations for q-Orthogonal Polynomials , 2002, Canadian Journal of Mathematics.
[12] I. Gessel. Some Congruences for Generalized Euler Numbers , 1983, Canadian Journal of Mathematics.
[13] A. Robert,et al. Some congruences concerning the Bell numbers , 1996 .
[14] R. Askey. Orthogonal Polynomials and Special Functions , 1975 .
[15] A. Guinand. The Umbral Method: A Survey of Elementary Mnemonic and Manipulative Uses , 1979 .
[16] D. Dumont,et al. Derangements and Genocchi numbers , 1994 .
[17] D. Barsky. Congruences pour les nombres de Genocchi de 2e espèce , 1981 .
[18] G. Rota. The Number of Partitions of a Set , 1964 .
[19] G. Andrews. The Theory of Partitions: Frontmatter , 1976 .
[20] Dominique Dumont,et al. Dérangements et nombres de Genocchi , 1994, Discret. Math..
[21] Gian-Carlo Rota,et al. Mathematical Essays in honor of Gian-Carlo Rota , 1998 .
[22] G. Andrews,et al. Generalizations of Cauchy’s summation theorem for Schur functions , 1988 .
[23] Mourad E. H. Ismail,et al. A -umbral calculus , 1981 .
[24] Gian-Carlo Rota,et al. The classical umbral calculus , 1994 .
[25] L. Carlitz. Kummer's congruences (mod 2r) , 1959 .
[26] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[27] Masanobu Kaneko,et al. A Recurrence Formula for the Bernoulli Numbers , 1995 .
[28] Ira M. Gessel,et al. Short Proofs of Saalschütz's and Dixon's Theorems , 1985, Journal of combinatorial theory. Series A.
[29] L. Carlitz. Congruences for generalized Bell and Stirling numbers , 1955 .
[30] J. S. Frame. Bernoulli Numbers Modulo 27000 , 1961 .
[31] Jiang Zeng,et al. The q -Stirling numbers, continued fractions and the q -Charlier and q -Laguerre polynomials , 1995 .
[32] Jeremy Rouse,et al. Combinatorial Proofs of Congruences , 2003 .
[33] Mourad E. H. Ismail,et al. Classical Orthogonal Polynomials as Moments , 1997, Canadian Journal of Mathematics.
[34] E. Bell,et al. Postulational Bases for the Umbral Calculus , 1940 .
[35] D. Zeilberger. A Heterosexual Mehler Formula for the Straight Hermite Polynomials (A La Foata) , 1998, math/9807074.
[36] G. Doetsch,et al. Integraleigenschaften der Hermiteschen Polynome , 1930 .
[37] Dominique Foata,et al. A Combinatorial Proof of the Mehler Formula , 1978, J. Comb. Theory A.
[38] J. Touchard,et al. Nombres Exponentiels Et Nombres De Bernoulli , 1956, Canadian Journal of Mathematics.
[39] Germain Kreweras,et al. Sur les Permutations Comptées par les Nombres de Genocchi de 1-ière et 2-ième Espèce , 1997, Eur. J. Comb..
[40] A. D. Bucchianicoy. An Introduction to Umbral Calculus , 1998 .
[41] P. A. B. Pleasants,et al. Arithmetic properties of Bell numbers to a composite modulus I , 1979 .