Performance of convex underestimators in a branch-and-bound framework

The efficient determination of tight lower bounds in a branch-and-bound algorithm is crucial for the global optimization of models spanning numerous applications and fields. The global optimization method $$\alpha $$α-branch-and-bound ($$\alpha $$αBB, Adjiman et al. in Comput Chem Eng 22(9):1159–1179, 1998b, Comput Chem Eng 22(9):1137–1158, 1998a; Adjiman and Floudas in J Global Optim 9(1):23–40, 1996; Androulakis et al. J Global Optim 7(4):337–363, 1995; Floudas in Deterministic Global Optimization: Theory, Methods and Applications, vol. 37. Springer, Berlin, 2000; Maranas and Floudas in J Chem Phys 97(10):7667–7678, 1992, J Chem Phys 100(2):1247–1261, 1994a, J Global Optim 4(2):135–170, 1994), guarantees a global optimum with $$\epsilon $$ϵ-convergence for any $$\mathcal {C}^2$$C2-continuous function within a finite number of iterations via fathoming nodes of a branch-and-bound tree. We explored the performance of the $$\alpha $$αBB method and a number of competing methods designed to provide tight, convex underestimators, including the piecewise (Meyer and Floudas in J Global Optim 32(2):221–258, 2005), generalized (Akrotirianakis and Floudas in J Global Optim 30(4):367–390, 2004a, J Global Optim 29(3):249–264, 2004b), and nondiagonal (Skjäl et al. in J Optim Theory Appl 154(2):462–490, 2012) $$\alpha $$αBB methods, the Brauer and Rohn+E (Skjäl et al. in J Global Optim 58(3):411–427, 2014) $$\alpha $$αBB methods, and the moment method (Lasserre and Thanh in J Global Optim 56(1):1–25, 2013). Using a test suite of 40 multivariate, box-constrained, nonconvex functions, the methods were compared based on the tightness of generated underestimators and the efficiency of convergence of a branch-and-bound global optimization algorithm.

[1]  Nils Tönshoff,et al.  Implementation and Computational Results , 1997 .

[2]  Antoine Petitet,et al.  Minimizing development and maintenance costs in supporting persistently optimized BLAS , 2005 .

[3]  Christodoulos A. Floudas,et al.  A Generalization of the Classical αBB Convex Underestimation via Diagonal and Nondiagonal Quadratic Terms , 2012, J. Optim. Theory Appl..

[4]  Michael A. Saunders,et al.  USER’S GUIDE FOR SNOPT 5.3: A FORTRAN PACKAGE FOR LARGE-SCALE NONLINEAR PROGRAMMING , 2002 .

[5]  P. Gill,et al.  Fortran package for nonlinear programming. User's Guide for NPSOL (Version 4. 0) , 1986 .

[6]  Christodoulos A. Floudas,et al.  Convex Underestimation of Twice Continuously Differentiable Functions by Piecewise Quadratic Perturbation: Spline αBB Underestimators , 2005, J. Glob. Optim..

[7]  Christodoulos A. Floudas,et al.  Trilinear Monomials with Mixed Sign Domains: Facets of the Convex and Concave Envelopes , 2004, J. Glob. Optim..

[8]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[9]  Makoto Yamashita,et al.  A high-performance software package for semidefinite programs: SDPA 7 , 2010 .

[10]  A. Neumaier,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs — I. Theoretical advances , 1998 .

[11]  Yaroslav D. Sergeyev,et al.  Lipschitz gradients for global optimization in a one-point-based partitioning scheme , 2012, J. Comput. Appl. Math..

[12]  J. Rohn Bounds on Eigenvalues of Interval Matrices , 1998 .

[13]  James E. Falk,et al.  Jointly Constrained Biconvex Programming , 1983, Math. Oper. Res..

[14]  Christodoulos A. Floudas,et al.  Rigorous convex underestimators for general twice-differentiable problems , 1996, J. Glob. Optim..

[15]  C. Adjiman,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs—II. Implementation and computational results , 1998 .

[16]  Milan Hlad'ik,et al.  The Effect of Hessian Evaluations in the Global Optimization α BB Method , 2013, 1307.2791.

[17]  C. Floudas,et al.  A global optimization approach for Lennard‐Jones microclusters , 1992 .

[18]  Christodoulos A. Floudas,et al.  Finding all solutions of nonlinearly constrained systems of equations , 1995, J. Glob. Optim..

[19]  Eldon R. Hansen,et al.  Sharpness in Interval Computations , 1997, Reliab. Comput..

[20]  Yaroslav D. Sergeyev,et al.  Acceleration of Univariate Global Optimization Algorithms Working with Lipschitz Functions and Lipschitz First Derivatives , 2013, SIAM J. Optim..

[21]  Christodoulos A Floudas,et al.  Global minimum potential energy conformations of small molecules , 1994, J. Glob. Optim..

[22]  C. Bendtsen FADBAD, a flexible C++ package for automatic differentiation - using the forward and backward method , 1996 .

[23]  Christodoulos A. Floudas,et al.  Tight convex underestimators for $${{\mathcal C}^2}$$-continuous problems: I. univariate functions , 2008, J. Glob. Optim..

[24]  C. Floudas Handbook of Test Problems in Local and Global Optimization , 1999 .

[25]  Christodoulos A. Floudas,et al.  A New Class of Improved Convex Underestimators for Twice Continuously Differentiable Constrained NLPs , 2004, J. Glob. Optim..

[26]  Christodoulos A. Floudas,et al.  Tight convex underestimators for $${\mathcal{C}^2}$$ -continuous problems: II. multivariate functions , 2008, J. Glob. Optim..

[27]  Christodoulos A. Floudas,et al.  Computational Experience with a New Class of Convex Underestimators: Box-constrained NLP Problems , 2004, J. Glob. Optim..

[28]  Christodoulos A. Floudas,et al.  Trilinear Monomials with Positive or Negative Domains: Facets of the Convex and Concave Envelopes , 2004 .

[29]  Jean B. Lasserre,et al.  Convex underestimators of polynomials , 2011, IEEE Conference on Decision and Control and European Control Conference.

[30]  Nikolaos V. Sahinidis,et al.  Semidefinite Relaxations of Fractional Programs via Novel Convexification Techniques , 2001, J. Glob. Optim..

[31]  Roman G. Strongin,et al.  Introduction to Global Optimization Exploiting Space-Filling Curves , 2013 .

[32]  Christodoulos A. Floudas,et al.  αBB: A global optimization method for general constrained nonconvex problems , 1995, J. Glob. Optim..

[33]  Nikolaos V. Sahinidis,et al.  Convex extensions and envelopes of lower semi-continuous functions , 2002, Math. Program..

[34]  C. Floudas,et al.  A deterministic global optimization approach for molecular structure determination , 1994 .

[35]  Tapio Westerlund,et al.  New methods for calculating $$\alpha $$BB-type underestimators , 2014, J. Glob. Optim..

[36]  A. Brauer Limits for the characteristic roots of a matrix. III , 1946 .

[37]  Christodoulos A. Floudas,et al.  Deterministic global optimization - theory, methods and applications , 2010, Nonconvex optimization and its applications.