Unconditionally stable schemes for equations of thin film epitaxy
暂无分享,去创建一个
[1] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[2] B. Vollmayr-Lee,et al. Fast and accurate coarsening simulation with an unconditionally stable time step. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[3] Richard L. Schwoebel,et al. Step Motion on Crystal Surfaces. II , 1966 .
[4] Charles M. Elliott,et al. The Cahn-Hilliard Model for the Kinetics of Phase Separation , 1989 .
[5] Bo Li,et al. Epitaxial Growth Without Slope Selection: Energetics, Coarsening, and Dynamic Scaling , 2004, J. Nonlinear Sci..
[6] Robert V. Kohn,et al. Upper bound on the coarsening rate for an epitaxial growth model , 2003 .
[7] D. Moldovan,et al. Interfacial coarsening dynamics in epitaxial growth with slope selection , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[8] Mariano Giaquinta,et al. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. (AM-105), Volume 105 , 1984 .
[9] Daisuke Furihata,et al. A stable and conservative finite difference scheme for the Cahn-Hilliard equation , 2001, Numerische Mathematik.
[10] Cheng Wang,et al. Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation , 2009, J. Comput. Phys..
[11] Cheng Wang,et al. An Energy-Stable and Convergent Finite-Difference Scheme for the Phase Field Crystal Equation , 2009, SIAM J. Numer. Anal..
[12] Andrea L. Bertozzi,et al. Inpainting of Binary Images Using the Cahn–Hilliard Equation , 2007, IEEE Transactions on Image Processing.
[13] R. Temam. Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .
[14] Xiaoming Wang,et al. Approximation of stationary statistical properties of dissipative dynamical systems: Time discretization , 2010, Math. Comput..
[15] Robert V. Kohn,et al. Energy-Driven Pattern Formation , 2006 .
[16] E. Polak,et al. Note sur la convergence de méthodes de directions conjuguées , 1969 .
[17] James A. Warren,et al. An efficient algorithm for solving the phase field crystal model , 2008, J. Comput. Phys..
[18] F. Hudda,et al. Atomic View of Surface Self‐Diffusion: Tungsten on Tungsten , 1966 .
[19] I. Ekeland,et al. Convex analysis and variational problems , 1976 .
[20] R. Nicolaides,et al. Numerical analysis of a continuum model of phase transition , 1991 .
[21] L. Evans. MULTIPLE INTEGRALS IN THE CALCULUS OF VARIATIONS AND NONLINEAR ELLIPTIC SYSTEMS , 1984 .
[22] Robert V. Kohn,et al. Coarsening rates for models of multicomponent phase separation , 2004 .
[23] Bo Li,et al. Center for Scientific Computation And Mathematical Modeling , 2003 .
[24] D. J. Eyre. Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation , 1998 .
[25] Tao Tang,et al. Stability Analysis of Large Time-Stepping Methods for Epitaxial Growth Models , 2006, SIAM J. Numer. Anal..