Unconditionally stable schemes for equations of thin film epitaxy

We present unconditionally stable and convergent numerical sche- mes for gradient flows with energy of the form $ \int_\Omega( F(\nabla\phi(\x)) + \frac{\epsilon^2}{2}|\Delta\phi(\x)|^2 )$dx. The construction of the schemes involves an appropriate extension of Eyre's idea of convex-concave decomposition of the energy functional. As an application, we derive unconditionally stable and convergent schemes for epitaxial film growth models with slope selection (F(y)= 1/4(|y|2-1)2) and without slope selection (F(y)= -1/2ln(1+|y|2)). We conclude the paper with some preliminary computations that employ the proposed schemes.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  B. Vollmayr-Lee,et al.  Fast and accurate coarsening simulation with an unconditionally stable time step. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Richard L. Schwoebel,et al.  Step Motion on Crystal Surfaces. II , 1966 .

[4]  Charles M. Elliott,et al.  The Cahn-Hilliard Model for the Kinetics of Phase Separation , 1989 .

[5]  Bo Li,et al.  Epitaxial Growth Without Slope Selection: Energetics, Coarsening, and Dynamic Scaling , 2004, J. Nonlinear Sci..

[6]  Robert V. Kohn,et al.  Upper bound on the coarsening rate for an epitaxial growth model , 2003 .

[7]  D. Moldovan,et al.  Interfacial coarsening dynamics in epitaxial growth with slope selection , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  Mariano Giaquinta,et al.  Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. (AM-105), Volume 105 , 1984 .

[9]  Daisuke Furihata,et al.  A stable and conservative finite difference scheme for the Cahn-Hilliard equation , 2001, Numerische Mathematik.

[10]  Cheng Wang,et al.  Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation , 2009, J. Comput. Phys..

[11]  Cheng Wang,et al.  An Energy-Stable and Convergent Finite-Difference Scheme for the Phase Field Crystal Equation , 2009, SIAM J. Numer. Anal..

[12]  Andrea L. Bertozzi,et al.  Inpainting of Binary Images Using the Cahn–Hilliard Equation , 2007, IEEE Transactions on Image Processing.

[13]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .

[14]  Xiaoming Wang,et al.  Approximation of stationary statistical properties of dissipative dynamical systems: Time discretization , 2010, Math. Comput..

[15]  Robert V. Kohn,et al.  Energy-Driven Pattern Formation , 2006 .

[16]  E. Polak,et al.  Note sur la convergence de méthodes de directions conjuguées , 1969 .

[17]  James A. Warren,et al.  An efficient algorithm for solving the phase field crystal model , 2008, J. Comput. Phys..

[18]  F. Hudda,et al.  Atomic View of Surface Self‐Diffusion: Tungsten on Tungsten , 1966 .

[19]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[20]  R. Nicolaides,et al.  Numerical analysis of a continuum model of phase transition , 1991 .

[21]  L. Evans MULTIPLE INTEGRALS IN THE CALCULUS OF VARIATIONS AND NONLINEAR ELLIPTIC SYSTEMS , 1984 .

[22]  Robert V. Kohn,et al.  Coarsening rates for models of multicomponent phase separation , 2004 .

[23]  Bo Li,et al.  Center for Scientific Computation And Mathematical Modeling , 2003 .

[24]  D. J. Eyre Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation , 1998 .

[25]  Tao Tang,et al.  Stability Analysis of Large Time-Stepping Methods for Epitaxial Growth Models , 2006, SIAM J. Numer. Anal..