Contribution to Numerically Efficient Modelling of Thermodynamic SystemsA

This thesis investigates two aspects of numerically efficient system modelling: calculation of thermophysical properties, and modelling of tubes and heat exchangers. Four interpolation algorithms for highly precise thermophysical properties of pure and pseudo pure fluids are discussed, implemented, and compared in terms of: calculation speed, thermodynamic consistency, amount of data required, and influence on the DAE-solving process. A new, general, fail-safe, flexible, and fast method to describe the two phase region of a binary mixture based on spline interpolation is presented, that employs the highly precise multiparameter equation of state. A simplified finite volume method that enables the numerically efficient simulation of tubes and heat exchangers on system level is discussed. For the first time the singularity occurring in the algebraic relations is located and eliminated. Finally, the above mentioned methods and models are applied to an evaluation of alternative air conditioning systems of a city bus.

[1]  Martin Peter Breil,et al.  Thermodynamic Models: Fundamental & Computational Aspects , 2008 .

[2]  Sven Erik Mattsson,et al.  Simulation of object-oriented continuous time models , 1995 .

[3]  D. Anderson,et al.  Algorithms for minimization without derivatives , 1974 .

[4]  H. Walter,et al.  Simulation von Kraftwerken und wärmetechnischen Anlagen , 2009 .

[5]  J. N. Lyness,et al.  Van der Monde systems and numerical differentiation , 1966 .

[6]  François E. Cellier,et al.  Continuous System Simulation , 2006 .

[7]  S. C. Kaushik,et al.  Simulation of an ammonia–water compression–absorption refrigeration system for water chilling application , 2010 .

[8]  W. Christoph Müller Fast and accurate water and steam properties programs for two-phase flow calculations , 1994 .

[9]  Daniel G. Friend,et al.  A Helmholtz Free Energy Formulation of the Thermodynamic Properties of the Mixture {Water + Ammonia} , 1998 .

[10]  Christoph Richter,et al.  Proposal of New Object-Oriented Equation-Based Model Libraries for Thermodynamic Systems , 2008 .

[11]  Trond Andresen,et al.  Mathematical modeling of CO2 based heat pumping systems: New developments for simulation tools to aid the design of systems for non-residential buildings , 2009 .

[12]  Bijan Kumar Mandal,et al.  Computer Based Thermodynamic Properties of Ammonia-Water Mixture for the Analysis of Power and Refrigeration Cycles , 2012 .

[13]  Wilhelm Tegethoff,et al.  Modelling of heat pumps with an object-oriented model library for thermodynamic systems , 2010 .

[14]  K. Kobe The properties of gases and liquids , 1959 .

[15]  Eva Thorin Thermophysical Properties of Ammonia–Water Mixtures for Prediction of Heat Transfer Areas in Power Cycles , 2001 .

[16]  Helmuth Späth,et al.  Two-dimensional spline interpolation algorithms , 1993 .

[17]  L. Petzold A description of dassl: a differential/algebraic system solver , 1982 .

[18]  G. Raabe Molecular Simulation Studies on the Vapor–Liquid Phase Equilibria of Binary Mixtures of R-1234yf and R-1234ze(E) with R-32 and CO2 , 2013 .

[19]  H. Baehr,et al.  An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2‐Tetrafluoroethane (HFC‐134a) for Temperatures from 170 K to 455 K and Pressures up to 70 MPa , 1994 .

[20]  Peter A. Fritzson,et al.  Introduction to Modeling and Simulation of Technical and Physical Systems with Modelica , 2011 .

[21]  Transfinite interpolation of steam tables , 1975 .

[22]  Adnan Sözen,et al.  Determination of thermodynamic properties of an alternative refrigerant (R407c) using artificial neural network , 2009, Expert Syst. Appl..

[23]  Gabriele Raabe,et al.  Molecular modeling of fluoropropene refrigerants. , 2012, The journal of physical chemistry. B.

[24]  F. Ziegler,et al.  Control of absorption chillers by insight: the characteristic equation , 2008 .

[25]  Roland Span,et al.  Multiparameter Equations of State: An Accurate Source of Thermodynamic Property Data , 2000 .

[26]  I. Horuz An Alternative Road Transport Refrigeration , 1998 .

[27]  H. Kretzschmar,et al.  The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam , 2000 .

[28]  CALCULATION OF REFRIGERANT PROPERTIES BY LINEAR INTERPOLATION OF BIDIMENSIONAL MESHES , 2005 .

[29]  M. McLinden,et al.  NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 8.0 , 2007 .

[30]  Guoliang Ding,et al.  Extension of the Implicit Curve-Fitting Method for Fast Calculation of Thermodynamic Properties of Subcooled Refrigerants , 2009 .

[31]  Ralf Dohrn,et al.  Berechnung von Phasengleichgewichten , 1994 .

[32]  T. Srinivas,et al.  THERMODYNAMIC PROPERTIES OF BINARY MIXTURE FOR POWER GENERATION SYSTEMS , 2010 .

[33]  Eduardo Zarza,et al.  Chattering in dynamic mathematical two-phase flow models , 2009, 2009 European Control Conference (ECC).

[34]  Francesco Casella,et al.  Modelling of thermo-hydraulic power generation processes using Modelica , 2006 .

[35]  Francesco Casella,et al.  Object-oriented modelling and simulation of heat exchangers with finite element methods , 2007 .

[36]  Helmuth Späth,et al.  One-dimensional spline interpolation algorithms , 1995 .

[37]  Ruzhu Wang,et al.  Transportation of low-grade thermal energy over long distance by ammonia-water absorption , 2009 .

[38]  Michael A. Wolfe,et al.  ALGLIB, a simple symbol-manipulation package , 1985, CACM.

[39]  Gerhard Schmitz,et al.  Status of ClaRaCCS: Modelling and Simulation of Coal-Fired Power Plants with CO2 Capture , 2012 .

[40]  H. D. Baehr Thermodynamische Fundamentalgleichungen und charakteristische Funtionen , 1998 .

[41]  W. Wagner,et al.  Equations of State for Technical Applications. III. Results for Polar Fluids , 2003 .

[42]  Bryan P. Rasmussen Dynamic modeling for vapor compression systems—Part I: Literature review , 2011, HVAC&R Research.

[43]  Arzu Sencan Sahin,et al.  COMPARATIVE ANALYSIS OF NEURAL NETWORK AND NEURO-FUZZY SYSTEM FOR THERMODYNAMIC PROPERTIES OF REFRIGERANTS , 2012, Appl. Artif. Intell..

[44]  Hilding Elmqvist,et al.  Object-Oriented Modeling of Thermo-Fluid Systems , 2003 .

[45]  Ali Asghar Rohani,et al.  Comparison between the artificial neural network system and SAFT equation in obtaining vapor pressure and liquid density of pure alcohols , 2011, Expert Syst. Appl..

[46]  Eric W. Lemmon,et al.  Thermodynamic Properties of trans-1,3,3,3-tetrafluoropropene [R1234ze(E)]: Measurements of Density and Vapor Pressure and a Comprehensive Equation of State , 2010 .

[47]  Ch. Trepp,et al.  Equation of state for ammonia-water mixtures , 1984 .

[48]  D. Richon,et al.  Vapor−Liquid Equilibrium (VLE) Data for the Carbon Dioxide (CO2) + 1,1,1,2-Tetrafluoroethane (R134a) System at Temperatures from 252.95 K to 292.95 K and Pressures up to 2 MPa , 2002 .

[49]  Matthias Kunicka,et al.  Fast Calculation of Thermodynamic Properties of Water and Steam in Process Modelling using Spline Interpolation , 2008 .

[50]  François E. Cellier,et al.  Continuous system modeling , 1991 .

[51]  D. Nikovski,et al.  Fast Refrigerant Property Calculations Using Interpolation-Based Methods , 2012 .

[52]  José Fernández-Seara,et al.  Heat recovery system to power an onboard NH3-H2O absorption refrigeration plant in trawler chiller fishing vessels , 1998 .

[53]  Sérgio de Morais Hanriot,et al.  Using engine exhaust gas as energy source for an absorption refrigeration system , 2010 .

[54]  Sebastián Dormido,et al.  Mean Densities in Dynamic Mathematical Two-phase Flow Models , 2010 .

[55]  Pieter J. Mosterman,et al.  Real-Time Simulation Technologies: Principles, Methodologies, and Applications , 2012 .

[56]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[57]  A. Abdel-azim Fundamentals of Heat and Mass Transfer , 2011 .

[58]  W. Wagner,et al.  The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use , 2002 .

[59]  Rüdiger Franke,et al.  Stream Connectors - An Extension of Modelica for Device-Oriented Modeling of Convective Transport Phenomena , 2009 .

[60]  Jaroslav Pátek,et al.  Simple functions for fast calculations of selected thermodynamic properties of the ammonia-water system , 1995 .

[61]  George Jackson,et al.  New reference equation of state for associating liquids , 1990 .

[62]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[63]  Felix Ziegler,et al.  Recent developments and future prospects of sorption heat pump systems , 1999 .

[64]  Johannes P. Schlöder,et al.  Nonlinear Model Predictive Control of a Vapor Compression Cycle based on First Principle Models , 2012 .

[65]  Duu-Jong Lee,et al.  Efficient and accurate computation scheme of p-T thermodynamic properties of water and steam , 2012 .

[66]  Herbert Staedtke,et al.  Gasdynamic Aspects of Two-Phase Flow: Hyperbolicity, Wave Propagation Phenomena and Related Numerical Methods , 2006 .

[67]  Jiří Kobza Computing local parameters of biquartic interpolatory splines , 1995 .

[68]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[69]  S. Kabelac Die Schallgeschwindigkeit als thermodynamische Zustandsgröße , 1998 .

[70]  F. Varas,et al.  A hybrid formulation for fast explicit calculation of thermodynamic properties of refrigerants , 2012 .

[71]  Roland Kossel Hybride Simulation thermischer Systeme am Beispiel eines Reisebusses , 2011 .

[72]  H. C. Van Ness,et al.  An extension of the spline fit technique and applications to thermodynamic data , 1967 .

[73]  Eric W. Lemmon Pseudo-Pure Fluid Equations of State for the Refrigerant Blends R-410A, R-404A, R-507A, and R-407C , 2003 .

[74]  C. D. Boor,et al.  Bicubic Spline Interpolation , 1962 .

[75]  Andrew G. Alleyne,et al.  Hardware-in-the-Loop Load Emulation for Air Conditioning and Refrigeration Systems , 2010 .

[76]  C. Helrich,et al.  Modern Thermodynamics with Statistical Mechanics , 2008 .

[77]  D. Westphalen,et al.  Absorption refrigeration system for mobile applications utilizing exhaust gases , 1997 .

[78]  Chia-Jung Hsu Numerical Heat Transfer and Fluid Flow , 1981 .

[79]  Bärbel Kolbe,et al.  Chemical Thermodynamics for Process Simulation , 2012 .

[80]  F. Swesty,et al.  Thermodynamically Consistent Interpolation for Equation of State Tables , 1996 .

[81]  S. Tanabe,et al.  DEVELOPMENT OF FAST CALCULATION METHOD FOR AMMONIA REFRIGERATION CYCLE AND PARAMETER ADJUSTMENT WITH GENETIC ALGORITHM , 2007 .

[82]  José O. Valderrama,et al.  The state of the cubic equations of state , 2003 .

[83]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[84]  Francesco Casella,et al.  Object-Oriented Modelling of two-phase fluid flows by the finite volume method , 2006 .

[85]  Da-Wen Sun,et al.  Thermodynamic design data and optimum design maps for absorption refrigeration systems , 1997 .

[86]  P. G. Hill,et al.  Rapid and Accurate Calculation of Water and Steam Properties Using the Tabular Taylor Series Expansion Method , 2001 .

[87]  W. Wagner,et al.  A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple‐Point Temperature to 1100 K at Pressures up to 800 MPa , 1996 .

[88]  Jonas Eborn,et al.  AirConditioning - a Modelica Library for Dynamic Simulation of AC Systems , 2005 .

[89]  Wilhelm Tegethoff,et al.  A Limiter for Preventing Singularity in Simplified Finite Volume Methods , 2012 .

[90]  A. Bejan Advanced Engineering Thermodynamics , 1988 .

[91]  Stanley I. Sandler,et al.  Modeling Vapor-Liquid Equilibria: Cubic Equations of State and their Mixing Rules , 1998 .