Equilibrium Glauber dynamics of continuous particle systems as a scaling limit of Kawasaki dynamics

A Kawasaki dynamics in continuum is a dynamics of an infinite system of interacting particles in ℝ d which randomly hop over the space. In this paper, we deal with an equilibrium Kawasaki dynamics which has a Gibbs measure µ as invariant measure. We study a scaling limit of such a dynamics, derived through a scaling of the jump rate. Informally, we expect that, in the limit, only jumps of "infinite length" will survive, i.e., we expect to arrive at a Glauber dynamics in continuum (a birth-and-death process in ℝ d ). We prove that, in the low activity-high temperature regime, the generators of the Kawasaki dynamics converge to the generator of a Glauber dynamics. The convergence is on the set of exponential functions, in the L 2(µ)-norm. Furthermore, additionally assuming that the potential of pair interaction is positive, we prove the weak convergence of the finite-dimensional distributions of the processes.

[1]  K. Parthasarathy,et al.  Probability measures on metric spaces , 1967 .

[2]  J. Fritz Gradient Dynamics of Infinite Point Systems , 1987 .

[3]  N/V-limit for stochastic dynamics in continuous particle systems , 2005, math/0512464.

[4]  Gustavo Posta,et al.  Spectral gap estimates for interacting particle systems via a Bochner-type identity , 2005 .

[5]  Non-equilibrium stochastic dynamics in continuum: The free case , 2007, math/0701736.

[6]  E. Lytvynov,et al.  Glauber dynamics of continuous particle systems , 2003, math/0306252.

[7]  Sergio Albeverio,et al.  Analysis and Geometry on Configuration Spaces , 1998 .

[8]  David Ruelle,et al.  Superstable interactions in classical statistical mechanics , 1970 .

[9]  Equilibrium Glauber and Kawasaki dynamics of continuous particle systems , 2005 .

[10]  I︠u︡. M. Berezanskiĭ,et al.  Spectral Methods in Infinite-Dimensional Analysis , 1995 .

[11]  Sergio Albeverio,et al.  Analysis and Geometry on Configuration Spaces: The Gibbsian Case☆ , 1998 .

[12]  E. Davies,et al.  One-parameter semigroups , 1980 .

[13]  David Ruelle,et al.  Some remarks on the ground state of infinite systems in statistical mechanics , 1969 .

[14]  E. CastroPeter,et al.  Infinitely Divisible Point Processes , 1982 .

[15]  A. Rebenko A New Proof of Ruelle's Superstability Bounds , 1998 .

[16]  Zhi-Ming Ma,et al.  Introduction to the theory of (non-symmetric) Dirichlet forms , 1992 .

[17]  J. Freixas Different ways to represent weighted majority games , 1997 .

[18]  Diffusion approximation for equilibrium Kawasaki dynamics in continuum , 2007, math/0702178.

[19]  Hans Zessin,et al.  Integral and Differential Characterizations of the GIBBS Process , 1979 .

[20]  R. Minlos Regularity of the gibbs limit distribution , 1967 .

[21]  David Ruelle,et al.  Cluster Property of the Correlation Functions of Classical Gases , 1964 .

[22]  F. Martinelli,et al.  On the spectral gap of Kawasaki dynamics under a mixing condition revisited , 2000 .

[23]  Tobias Kuna,et al.  HARMONIC ANALYSIS ON CONFIGURATION SPACE I: GENERAL THEORY , 2002 .

[24]  D. Ruelle Statistical Mechanics: Rigorous Results , 1999 .

[25]  John Frank Charles Kingman,et al.  Infinitely Divisible Point Processes , 1979 .