Application of Swarm Techniques to Requirements Engineering: Requirements Tracing

We posit that swarm intelligence can be applied to effectively address requirements engineering problems. Specifically, this paper demonstrates the applicability of swarm intelligence to the requirements tracing problem using a simple ant colony algorithm. The technique has been validated using two real-world datasets from two problem domains. The technique can generate requirements traceability matrices (RTMs) between textual requirements artifacts (high level requirements traced to low level requirements, for example) with equivalent or better accuracy than traditional information retrieval techniques.

[1]  Giuliano Antoniol,et al.  Search-based techniques applied to optimization of project planning for a massive maintenance project , 2005, 21st IEEE International Conference on Software Maintenance (ICSM'05).

[2]  Giuliano Antoniol,et al.  Recovering Traceability Links between Code and Documentation , 2002, IEEE Trans. Software Eng..

[3]  Jane Huffman Hayes,et al.  Helping analysts trace requirements: an objective look , 2004, Proceedings. 12th IEEE International Requirements Engineering Conference, 2004..

[4]  Olly Gotel,et al.  Extended requirements traceability: results of an industrial case study , 1997, Proceedings of ISRE '97: 3rd IEEE International Symposium on Requirements Engineering.

[5]  Martin F. Porter,et al.  An algorithm for suffix stripping , 1997, Program.

[6]  Jane Huffman Hayes,et al.  Improving requirements tracing via information retrieval , 2003, Proceedings. 11th IEEE International Requirements Engineering Conference, 2003..

[7]  Nasser Ghasem-Aghaee,et al.  Text feature selection using ant colony optimization , 2009, Expert Syst. Appl..

[8]  Thomas E. Potok,et al.  Document clustering using particle swarm optimization , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[9]  Christopher D. Manning,et al.  Introduction to Information Retrieval , 2010, J. Assoc. Inf. Sci. Technol..

[10]  Andries Petrus Engelbrecht,et al.  Data clustering using particle swarm optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[11]  Lars Schmidt-Thieme,et al.  Swarming to rank for information retrieval , 2009, GECCO.

[12]  Giuliano Antoniol,et al.  Automatic mutation test input data generation via ant colony , 2007, GECCO '07.

[13]  M. Reitz,et al.  Software Evolvability by Component-Orientation , 2006, 2006 Second International IEEE Workshop on Software Evolvability (SE'06).

[14]  Andries Petrus Engelbrecht,et al.  Fundamentals of Computational Swarm Intelligence , 2005 .

[15]  Jane Cleland-Huang,et al.  Phrasing in Dynamic Requirements Trace Retrieva , 2006, 30th Annual International Computer Software and Applications Conference (COMPSAC'06).

[16]  Jitian Xiao,et al.  Ant colony optimisation for generation of conformance testing sequences using a characterising set , 2007 .

[17]  J. Deneubourg,et al.  The self-organizing exploratory pattern of the argentine ant , 1990, Journal of Insect Behavior.

[18]  Barbara Webb,et al.  Swarm Intelligence: From Natural to Artificial Systems , 2002, Connect. Sci..

[19]  Robin C. Laney,et al.  Are Your Lights Off? Using Problem Frames to Diagnose System Failures , 2009, 2009 17th IEEE International Requirements Engineering Conference.

[20]  Andrea Zisman,et al.  Rule-based generation of requirements traceability relations , 2004, J. Syst. Softw..