Mathematical Programs with Equilibrium Constraints : Automatic Reformulation and Solution via Constrained Optimization ∗

Constrained optimization has been extensively used to solve many large scale deterministic problems arising in economics, including, for example, square systems of equations and nonlinear programs. A separate set of models have been generated more recently, using complementarity to model various phenomenon, particularly in general equilibria. The unifying framework of mathematical programs with equilibrium constraints (MPEC) has been postulated for problems that combine facets of optimization and complementarity. This paper briefly reviews some methods available to solve these problems and describes a new suite of tools for working with MPEC models. Computational results demonstrating the potential of this tool are given that automatically construct and solve a variety of different nonlinear programming reformulations of MPEC problems. This material is based on research partially supported by the National Science Foundation Grant CCR-9972372, the Air Force Office of Scientific Research Grant F49620-011-0040, Microsoft Corporation and the Guggenheim Foundation Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford, OX1 3QD Permanent address: Computer Sciences Department, University of Wisconsin, 1210 West Dayton Street, Madison, Wisconsin 53706, USA GAMS Development Corporation, 1217 Potomac Street, N.W., Washington, D.C. 20007

[1]  Daniel Ralph,et al.  Global Convergence of Damped Newton's Method for Nonsmooth Equations via the Path Search , 1994, Math. Oper. Res..

[2]  Michael C. Ferris,et al.  Modeling and Solution Environments for MPEC: GAMS & MATLAB , 1998 .

[3]  S. M. Robinson,et al.  Shadow Prices for Measures of Effectiveness, II: General Model , 1993, Oper. Res..

[4]  János D. Pintér,et al.  Global optimization in action , 1995 .

[5]  Shantayanan Devarajan,et al.  Implementing a computable general equilibrium model on GAMS : the Cameroon model , 1987 .

[6]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[7]  Nikolaos V. Sahinidis,et al.  BARON: A general purpose global optimization software package , 1996, J. Glob. Optim..

[8]  Michal Kočvara,et al.  Nonsmooth approach to optimization problems with equilibrium constraints : theory, applications, and numerical results , 1998 .

[9]  M. Ferris,et al.  Complementarity problems in GAMS and the PATH solver 1 This material is based on research supported , 2000 .

[10]  Thomas F. Rutherford,et al.  Applied General Equilibrium Modeling with MPSGE as a GAMS Subsystem: An Overview of the Modeling Framework and Syntax , 1999 .

[11]  David Kendrick,et al.  GAMS, a user's guide , 1988, SGNM.

[12]  Stephen M. Robinson,et al.  Shadow Prices for Measures of Effectiveness, I: Linear Model , 1993, Oper. Res..

[13]  T. Rutherford MILES: A Mixed Inequality and nonLinear Equation Solver , 1993 .

[14]  A. Fischer A special newton-type optimization method , 1992 .

[15]  M. Kojima,et al.  EXTENSION OF NEWTON AND QUASI-NEWTON METHODS TO SYSTEMS OF PC^1 EQUATIONS , 1986 .

[16]  M. Ferris,et al.  Case Studies in Complementarity: Improving Model Formulation , 1999 .

[17]  Benjamin H. Stevens,et al.  Location theory and programming models: The von Thünen case , 1968 .

[18]  Arne Drud,et al.  CONOPT: A GRG code for large sparse dynamic nonlinear optimization problems , 1985, Math. Program..

[19]  Francisco Facchinei,et al.  The Semismooth Algorithm for Large Scale Complementarity Problems , 2001, INFORMS J. Comput..

[20]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[21]  Francis Tin-Loi,et al.  Nonlinear programming approaches for an inverse problem in quasibrittle fracture , 2002 .

[22]  S. Dirkse,et al.  The path solver: a nommonotone stabilization scheme for mixed complementarity problems , 1995 .

[23]  Timothy J. Kehoe,et al.  A numerical investigation of multiplicity of equilibria , 1985 .

[24]  T. Rutherford Extension of GAMS for complementarity problems arising in applied economic analysis , 1995 .

[25]  Jeffrey C. Trinkle,et al.  Complementarity formulations and existence of solutions of dynamic multi-rigid-body contact problems with coulomb friction , 1996, Math. Program..

[26]  Jorge J. Moré,et al.  The NEOS Server , 1998 .

[27]  E. Maskin,et al.  A theory of dynamic oligopoly. , 1989 .

[28]  Nikolaos V. Sahinidis,et al.  Global optimization of mixed-integer nonlinear programs: A theoretical and computational study , 2004, Math. Program..

[29]  Francisco Facchinei,et al.  A smoothing method for mathematical programs with equilibrium constraints , 1999, Math. Program..

[30]  A. Talman,et al.  Simplicial variable dimension algorithms for solving the nonlinear complementarity problem on a product of unit simplices using a general labelling , 1987 .

[31]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[32]  M. Ferris,et al.  Limit Analysis of Frictional Block Assemblies as a Mathematical Program With Complementarity Constraints , 2001 .

[33]  Michael A. Saunders,et al.  MINOS 5. 0 user's guide , 1983 .

[34]  Todd Munson,et al.  Preprocessing Complementarity Problems , 2001 .

[35]  Michael A. Saunders,et al.  A practical anti-cycling procedure for linearly constrained optimization , 1989, Math. Program..

[36]  M. Kostreva Elasto-hydrodynamic lubrication: A non-linear complementarity problem , 1984 .

[37]  K. Arrow,et al.  EXISTENCE OF AN EQUILIBRIUM FOR A COMPETITIVE ECONOMY , 1954 .

[38]  E. D. Dolan,et al.  The Kestrel interface to the NEOS server. , 2001 .

[39]  Robert J. Vanderbei,et al.  An Interior-Point Algorithm for Nonconvex Nonlinear Programming , 1999, Comput. Optim. Appl..

[40]  L. Mathiesen Computation of economic equilibria by a sequence of linear complementarity problems , 1985 .

[41]  Olvi L. Mangasarian,et al.  A class of smoothing functions for nonlinear and mixed complementarity problems , 1996, Comput. Optim. Appl..

[42]  Michael C. Ferris,et al.  Expressing Complementarity Problems in an Algebraic Modeling Language and Communicating Them to Solvers , 1999, SIAM J. Optim..

[43]  Jorge Nocedal,et al.  An Interior Point Algorithm for Large-Scale Nonlinear Programming , 1999, SIAM J. Optim..

[44]  Michael C. Ferris,et al.  Engineering and Economic Applications of Complementarity Problems , 1997, SIAM Rev..

[45]  J. Pang,et al.  Existence of optimal solutions to mathematical programs with equilibrium constraints , 1988 .

[46]  S. Billups Algorithms for complementarity problems and generalized equations , 1996 .