Sample pretreatment on microfabricated devices.

The integration of sample pretreatment into microfluidic devices represents one of the remaining hurdles towards achieving true miniaturized total analysis systems (muTAS). The challenge is made more complex by the enormous variation in samples to be analyzed. Moreover, the pretreatment technique has to be compatible with the analysis device to which it is coupled in terms of time, reagent and power consumption, as well as sample volume. This review provides a thorough overview of the developments in this field to date.

[1]  T. B. Taylor,et al.  Optimization of the performance of the polymerase chain reaction in silicon-based microstructures. , 1997, Nucleic acids research.

[2]  Gijsbertus J.M. Krijnen,et al.  Fabrication of microsieves with sub-micron pore size by laser interference lithography , 2001 .

[3]  Ling Wang,et al.  Anchored multiplex amplification on a microelectronic chip array , 2000, Nature Biotechnology.

[4]  R. Chien,et al.  Electroosmotic properties and peak broadening in field-amplified capillary electrophoresis , 1991 .

[5]  T Kitamori,et al.  Integration of an immunosorbent assay system: analysis of secretory human immunoglobulin A on polystyrene beads in a microchip. , 2000, Analytical chemistry.

[6]  R S Foote,et al.  Electrophoretic separation of proteins on a microchip with noncovalent, postcolumn labeling. , 2000, Analytical chemistry.

[7]  I M Hsing,et al.  A miniaturized DNA amplifier: its application in traditional Chinese medicine. , 2000, Analytical chemistry.

[8]  S. Jacobson,et al.  Microchip electrophoresis with sample stacking , 1995, Electrophoresis.

[9]  S. Jacobson,et al.  Microfabricated porous membrane structure for sample concentration and electrophoretic analysis. , 1999, Analytical chemistry.

[10]  D. Matson,et al.  An integrated microfabricated device for dual microdialysis and on-line ESI-ion trap mass spectrometry for analysis of complex biological samples. , 1999, Analytical chemistry.

[11]  G. Kovacs Micromachined Transducers Sourcebook , 1998 .

[12]  Andreas Manz,et al.  Design and development of a miniaturised total chemical analysis system for on-line lactate and glucose monitoring in biological samples , 1997 .

[13]  B. Karger,et al.  Integrated multichannel microchip electrospray ionization mass spectrometry: analysis of peptides from on-chip tryptic digestion of melittin. , 1997, Rapid communications in mass spectrometry : RCM.

[14]  R. Mathies,et al.  Monolithic integrated microfluidic DNA amplification and capillary electrophoresis analysis system , 2000 .

[15]  Igor L. Medintz,et al.  Single-molecule DNA amplification and analysis in an integrated microfluidic device. , 2001, Analytical chemistry.

[16]  M. Tokeshi,et al.  Integration of a microextraction system on a glass chip: ion-pair solvent extraction of Fe(II) with 4,7-diphenyl-1,10-phenanthrolinedisulfonic acid and tri-n-octylmethylammonium chloride , 2000, Analytical chemistry.

[17]  M. A. Northrup,et al.  A miniature analytical instrument for nucleic acids based on micromachined silicon reaction chambers. , 1998, Analytical chemistry.

[18]  L. Gorton,et al.  Recent trends in the application of microdialysis in bioprocesses1This paper has previously been published in vol. 374/2-3 of Analytica Chimica Acta. PII of original manuscript: PII S0003-2670(98)00404-8.1 , 1999 .

[19]  R. Oleschuk,et al.  Trapping of bead-based reagents within microfluidic systems: on-chip solid-phase extraction and electrochromatography , 2000, Analytical chemistry.

[20]  F. Regnier,et al.  Microfabricated filters for microfluidic analytical systems. , 1999, Analytical chemistry.

[21]  H M Widmer,et al.  Continuous separation of high molecular weight compounds using a microliter volume free-flow electrophoresis microstructure. , 1996, Analytical chemistry.

[22]  Dermot Diamond,et al.  Chemical sensing using an integrated microfluidic system based on the Berthelot reaction , 2001 .

[23]  J. Landers,et al.  Electrokinetic injection for stacking neutral analytes in capillary and microchip electrophoresis. , 2001, Analytical chemistry.

[24]  G. Bruin,et al.  Recent developments in electrokinetically driven analysis on microfabricated devices , 2000, Electrophoresis.

[25]  Kurt Seiler,et al.  Electroosmotic Pumping and Valveless Control of Fluid Flow within a Manifold of Capillaries on a Glass Chip , 1994 .

[26]  D. J. Harrison,et al.  Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical Analysis System on a Chip , 1993, Science.

[27]  J. Michael Ramsey,et al.  Effects of injection schemes and column geometry on the performance of microchip electrophoresis devices , 1994 .

[28]  Harrison Dj,et al.  Chemiluminescence detection in integrated post‐separation reactors for microchip‐based capillary electrophoresis and affinity electrophoresis , 1998 .

[29]  F. Everaerts,et al.  High-performance zone electrophoresis , 1979 .

[30]  S. Jacobson,et al.  Integrated system for rapid PCR-based DNA analysis in microfluidic devices. , 2000, Analytical chemistry.

[31]  S. Jacobson,et al.  Multiple sample PCR amplification and electrophoretic analysis on a microchip. , 1998, Analytical chemistry.

[32]  R S Foote,et al.  Microchip device for cell lysis, multiplex PCR amplification, and electrophoretic sizing. , 1998, Analytical chemistry.

[33]  J. Beckers,et al.  Isotachophoresis : theory, instrumentation and applications , 1976 .

[34]  P Belgrader,et al.  A minisonicator to rapidly disrupt bacterial spores for DNA analysis. , 1999, Analytical chemistry.

[35]  J. Michael Ramsey,et al.  Precolumn Reactions with Electrophoretic Analysis Integrated on a Microchip , 1994 .

[36]  M. Heller,et al.  Active microelectronic chip devices which utilize controlled electrophoretic fields for multiplex DNA hybridization and other genomic applications , 2000, Electrophoresis.

[37]  D Matson,et al.  A microfabricated dialysis device for sample cleanup in electrospray ionization mass spectrometry. , 1998, Analytical chemistry.

[38]  S. Terabe,et al.  Approaching a million-fold sensitivity increase in capillary electrophoresis with direct ultraviolet detection: cation-selective exhaustive injection and sweeping , 2000, Analytical chemistry.

[39]  Paul C. H. Li,et al.  Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects. , 1997, Analytical chemistry.

[40]  P Belgrader,et al.  Lysing bacterial spores by sonication through a flexible interface in a microfluidic system. , 2001, Analytical chemistry.

[41]  Brian N. Johnson,et al.  An integrated nanoliter DNA analysis device. , 1998, Science.

[42]  U. Ungerstedt,et al.  Microdialysis—principles and applications for studies in animals and man , 1991, Journal of internal medicine.

[43]  T. Kenny,et al.  Electroosmotic capillary flow with nonuniform zeta potential , 2000, Analytical Chemistry.

[44]  Jan C.T. Eijkel,et al.  Micromachined heated chemical reactor for pre-column derivatisation , 1998 .

[45]  Michael J. Sepaniak,et al.  Determination of metal ions by capillary zone electrophoresis with on-column chelation using 8-hydroxyquinoline-5-sulfonic acid , 1991 .

[46]  J P Landers,et al.  Polymerase chain reaction in polymeric microchips: DNA amplification in less than 240 seconds. , 2001, Analytical biochemistry.

[47]  Pierre Thibault,et al.  Rapid and sensitive separation of trace level protein digests using microfabricated devices coupled to a quadrupole ‐ time‐of‐flight mass spectrometer , 2000, Electrophoresis.

[48]  J P Landers,et al.  Infrared-mediated thermocycling for ultrafast polymerase chain reaction amplification of DNA. , 1998, Analytical chemistry.

[49]  D. J. Harrison,et al.  Integrated capillary electrophoresis devices with an efficient postcolumn reactor in planar quartz and glass chips. , 1996, Analytical chemistry.

[50]  S. Jacobson,et al.  High-Speed Separations on a Microchip , 1994 .

[51]  Jin-Woo Choi,et al.  A new magnetic bead-based, filterless bio-separator with planar electromagnet surfaces for integrated bio-detection systems , 2000 .

[52]  P. Yager,et al.  Microfluidic Diffusion-Based Separation and Detection , 1999, Science.

[53]  D. J. Harrison,et al.  Integration of immobilized trypsin bead beds for protein digestion within a microfluidic chip incorporating capillary electrophoresis separations and an electrospray mass spectrometry interface. , 2000, Rapid communications in mass spectrometry : RCM.

[54]  Mann A. Shoffner,et al.  Integrated cell isolation and polymerase chain reaction analysis using silicon microfilter chambers. , 1998, Analytical biochemistry.

[55]  A. Manz,et al.  Glass chips for high-speed capillary electrophoresis separations with submicrometer plate heights , 1993 .

[56]  T Fujii,et al.  Integration of gene amplification and capillary gel electrophoresis on a polydimethylsiloxane‐glass hybrid microchip , 2001, Electrophoresis.

[57]  R. Aebersold,et al.  Nanoflow solvent gradient delivery from a microfabricated device for protein identifications by electrospray ionization mass spectrometry. , 1998, Analytical chemistry.

[58]  N F de Rooij,et al.  Electrokinetically driven microfluidic chips with surface-modified chambers for heterogeneous immunoassays. , 2001, Analytical chemistry.

[59]  N F de Rooij,et al.  Multi-layer microfluidic glass chips for microanalytical applications , 2001, Fresenius' journal of analytical chemistry.

[60]  J P Landers,et al.  A universal concept for stacking neutral analytes in micellar capillary electrophoresis. , 1999, Analytical chemistry.

[61]  T Kitamori,et al.  Determination of carcinoembryonic antigen in human sera by integrated bead-bed immunoassay in a microchip for cancer diagnosis. , 2001, Analytical chemistry.

[62]  S. Jacobson,et al.  Determination of metal cations in microchip electrophoresis using on‐chip complexation and sample stacking , 1998 .

[63]  A Manz,et al.  Chemical amplification: continuous-flow PCR on a chip. , 1998, Science.

[64]  D. J. Harrison,et al.  Planar chips technology for miniaturization and integration of separation techniques into monitoring systems. Capillary electrophoresis on a chip , 1992 .

[65]  Kaniansky,et al.  Capillary electrophoresis separations on a planar chip with the column-coupling configuration of the separation channels , 2000, Analytical chemistry.

[66]  Andreas Manz,et al.  Continuous Sample Pretreatment Using a Free-Flow Electrophoresis Device Integrated onto a Silicon Chip , 1994 .

[67]  S. Jacobson,et al.  Solvent-programmed microchip open-channel electrochromatography. , 1998, Analytical chemistry.

[68]  Andreas Neyer,et al.  A new PMMA-microchip device for isotachophoresis with integrated conductivity detector , 2001 .

[69]  D. A. Saville,et al.  The dynamics of electrophoresis , 1991 .

[70]  M. A. Northrup,et al.  Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. , 1996, Analytical chemistry.

[71]  J. Michael Ramsey,et al.  Microchip Capillary Electrophoresis with an Integrated Postcolumn Reactor , 1994 .

[72]  J P Landers,et al.  Towards dynamic coating of glass microchip chambers for amplifying DNA via the polymerase chain reaction , 2001, Electrophoresis.

[73]  S. Jacobson,et al.  Integrated microdevice for DNA restriction fragment analysis. , 1996, Analytical chemistry.

[74]  L J Kricka,et al.  PCR in a silicon microstructure. , 1994, Clinical chemistry.

[75]  R. Chien,et al.  Sample stacking in laboratory-on-a-chip devices. , 2001, Journal of chromatography. A.

[76]  S. Terabe,et al.  Exceeding 5000-fold concentration of dilute analytes in micellar electrokinetic chromatography. , 1998, Science.

[77]  P. Fielden,et al.  Determination of metal cations on miniaturised planar polymeric separation devices using isotachophoresis with integrated conductivity detection. , 2001, The Analyst.

[78]  A. Heuberger,et al.  Anisotropic Etching of Crystalline Silicon in Alkaline Solutions II . Influence of Dopants , 1990 .

[79]  L J Kricka,et al.  Chip PCR. I. Surface passivation of microfabricated silicon-glass chips for PCR. , 1996, Nucleic acids research.

[80]  B. Finlayson,et al.  Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor. , 1999, Analytical chemistry.

[81]  A Manz,et al.  Novel Instrumentation for Real-Time Monitoring Using Miniaturized Flow Systems with Integrated Biosensors , 1997, Annals of clinical biochemistry.

[82]  K. Mullis,et al.  Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. , 1986, Cold Spring Harbor symposia on quantitative biology.

[83]  M. Salimans,et al.  Rapid and simple method for purification of nucleic acids , 1990, Journal of clinical microbiology.

[84]  Yu-Cheng Lin,et al.  A poly-methylmethacrylate electrophoresis microchip with sample preconcentrator , 2001 .

[85]  D J Harrison,et al.  mRNA isolation in a microfluidic device for eventual integration of cDNA library construction. , 2000, The Analyst.

[86]  H. Wagner,et al.  Free-flow electrophoresis , 1989, Nature.

[87]  William A. Mcmillan,et al.  Rapid, automated nucleic acid probe assays using silicon microstructures for nucleic acid concentration. , 1999, Journal of biomechanical engineering.

[88]  P Belgrader,et al.  A battery-powered notebook thermal cycler for rapid multiplex real-time PCR analysis. , 2001, Analytical chemistry.

[89]  D. Burgi,et al.  Optimization in sample stacking for high-performance capillary electrophoresis , 1991 .

[90]  S. Mangru,et al.  Dynamic DNA hybridization on a chip using paramagnetic beads. , 1999, Analytical chemistry.

[91]  P. Bergveld,et al.  A micromachined double lumen microdialysis probe connector with incorporated sensor for on-line sampling , 2000 .

[92]  N F de Rooij,et al.  Sample preconcentration by field amplification stacking for microchip‐based capillary electrophoresis , 2001, Electrophoresis.

[93]  J. Michael Ramsey,et al.  Solid phase extraction on microfluidic devices , 2000 .

[94]  J. van der Greef,et al.  Free flow electrophoresis device for continuous on-line separation in analytical systems. An application in biochemical detection. , 2000, Analytical chemistry.