An application of visible human database in radiotherapy: tutorial for image guided external radiotherapy (TIGER).

BACKGROUND AND PURPOSE Three-dimensional conformal radiotherapy and intensity modulated radiotherapy allow accurate dose delivery on target volumes. Due to the different background among specialists involved in target volume definition, the contouring emerges as one of the most questionable steps in treatment planning procedures. A software tool devoted to contouring training, named tutorial for image guided external radiotherapy ('TIGER'), based on the Visible Human Project images data-set, is described. MATERIALS AND METHODS TIGER is addressed to facilitate the learning of axial anatomical images, to promote the training and reproducibility in contouring process, to allow the availability of a tool to enhance the 'drill and practice' approach in training programs. TIGER includes three different environments: Anatomic tutorial devoted to facilitate a self-learning approach to axial body sections; Contouring tutorial addressed to practice contouring process of anatomical structures and to undergo a test program prepared by tutors; Teacher's tools to offer to tutors the opportunity to insert new outlines in TIGER-database, according to local needs or conventions, and to use them in tutorial programs. TIGER-database is grouped in six main anatomical sections: head and neck, male thorax, female thorax, abdomen, male pelvis, and female pelvis. Overall 432 corresponding CT-VH images and 1189 contours of 134 different anatomical structures and lymphatic drainage areas are available. The access to the TIGER software is allowed by ESTRO web site (http://www.estro.be). CONCLUSIONS TIGER provides an interactive human anatomy cross-sectional oriented source to facilitate the interpretation of CT scan images usually contoured in daily practice. It offers a drill tool to facilitate the learning of a reproducible contouring procedure.

[1]  S Senan,et al.  Evaluation of a target contouring protocol for 3D conformal radiotherapy in non-small cell lung cancer. , 1999, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[2]  R Martinez-Monge,et al.  Cross-sectional nodal atlas: a tool for the definition of clinical target volumes in three-dimensional radiation therapy planning. , 1999, Radiology.

[3]  L. Stitt,et al.  Variability of target volume delineation in cervical esophageal cancer. , 1998, International journal of radiation oncology, biology, physics.

[4]  P C Levendag,et al.  A three-dimensional CT-based target definition for elective irradiation of the neck. , 1999, International journal of radiation oncology, biology, physics.

[5]  C. Fiorino,et al.  Intra- and inter-observer variability in contouring prostate and seminal vesicles: implications for conformal treatment planning. , 1998, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[6]  D. Dearnaley,et al.  Target volume definition in conformal radiotherapy for prostate cancer: quality assurance in the MRC RT-01 trial. , 2000, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[7]  V Grégoire,et al.  Selection and delineation of lymph node target volumes in head and neck conformal radiotherapy. Proposal for standardizing terminology and procedure based on the surgical experience. , 2000, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[8]  G T Chen,et al.  Implementation of three dimensional conformal radiation therapy: prospects, opportunities, and challenges. , 1995, International journal of radiation oncology, biology, physics.

[9]  L. F. Cazzaniga,et al.  Interphysician variability in defining the planning target volume in the irradiation of prostate and seminal vesicles. , 1998, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.