Behavioral significance of motion direction causes anisotropic flash-lag, flash-drag, flash-repulsion, and movement-mislocalization effects.

Motion from periphery to central vision (foveopetal motion) causes a greater flash-lag effect than motion in the opposite direction (foveofugal motion). In order to examine the factors that contribute to the motion direction-based anisotropic flash-lag effect, we investigated the mislocalization of the flash caused by motion and the mislocalization of the moving object per se. We observed that for foveofugal motion, flashes were perceived shifted in the direction of motion but mislocalized in the opposite direction for foveopetal motion. Additionally the mislocalization of the moving object was larger in foveopetal motion than in foveofugal motion. Thus, both factors contribute to the anisotropic flash-lag effect. We interpret these findings in terms of greater behavioral significance of foveopetal motion in relation to foveofugal motion.

[1]  Kenji Yokoi,et al.  Object-Based Anisotropies in the Flash-Lag Effect , 2006, Psychological science.

[2]  Daniel J. Hannon,et al.  Direction of self-motion is perceived from optical flow , 1988, Nature.

[3]  Shinsuke Shimojo,et al.  Shifts in perceived position of flashed stimuli by illusory object motion , 2002, Vision Research.

[4]  E. Adelson,et al.  Phenomenal coherence of moving visual patterns , 1982, Nature.

[5]  Zhuanghua Shi,et al.  Motion-induced positional biases in the flash-lag configuration , 2008, Cognitive neuropsychology.

[6]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[7]  I. Murakami,et al.  Latency difference, not spatial extrapolation , 1998, Nature Neuroscience.

[8]  P. Cavanagh,et al.  Bi-directional illusory position shifts toward the end point of apparent motion , 2006, Vision Research.

[9]  L. Harris,et al.  Moving and the motion after-effect , 1981, Nature.

[10]  Romi Nijhawan,et al.  Motion extrapolation in catching , 1994, Nature.

[11]  A. Lit,et al.  Luminance-dependent visual latency for the hess effect, the pulfrich effect, and simple reaction time , 1983, Vision Research.

[12]  Kuno Kirschfeld,et al.  The Fröhlich effect: a consequence of the interaction of visual focal attention and metacontrast , 1999, Vision Research.

[13]  R Nijhawan,et al.  The Flash-Lag Phenomenon: Object Motion and Eye Movements , 2001, Perception.

[14]  Shin'ya Nishida,et al.  Influence of motion signals on the perceived position of spatial pattern , 1999, Nature.

[15]  T. Cornsweet,et al.  The staircrase-method in psychophysics. , 1962, The American journal of psychology.

[16]  Johannes M. Zanker,et al.  Perceptual deformation induced by visual motion , 2001, Naturwissenschaften.

[17]  S. Mateeff,et al.  Peripheral vision and perceived visual direction , 1983, Biological Cybernetics.

[18]  Jaj Jacques Roufs,et al.  Perception lag as a function of stimulus luminance , 1963 .

[19]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[20]  Shinsuke Shimojo,et al.  Cyclopean flash-lag illusion , 2006, Vision Research.

[21]  Kuno Kirschfeld,et al.  Stopping motion and the flash-lag effect , 2006, Vision Research.

[22]  K. D. De Valois,et al.  Vernier acuity with stationary moving Gabors. , 1991, Vision research.

[23]  G Aschersleben,et al.  Localizing the first position of a moving stimulus: The Fröhlich effect and an attention-shifting explanation , 1998, Perception & psychophysics.

[24]  Katsumi Watanabe,et al.  Object-based anisotropic mislocalization by retinotopic motion signals , 2007, Vision Research.

[25]  John H. R. Maunsell,et al.  Attentional modulation of visual motion processing in cortical areas MT and MST , 1996, Nature.

[26]  D. M. MacKAY,et al.  Visual Effects of Non-redundant Stimulation , 1961, Nature.

[27]  Gregor Schöner,et al.  Shorter latencies for motion trajectories than for flashes in population responses of cat primary visual cortex , 2004, The Journal of physiology.

[28]  Joan López-Moliner,et al.  Motion signal and the perceived positions of moving objects. , 2007, Journal of vision.

[29]  M. Morgan,et al.  Apparent Motion and the Pulfrich Effect , 1975, Perception.

[30]  M. Chappell Mapping a field of suppression surrounding visual stimuli. , 2007, Journal of vision.

[31]  R. Sekuler,et al.  Assimilation and contrast in motion perception: Explorations in cooperativity , 1990, Vision Research.

[32]  S. Mateeff,et al.  Perceptual latencies are shorter for motion towards the fovea than for motion away , 1988, Vision Research.

[33]  O. Braddick Segmentation versus integration in visual motion processing , 1993, Trends in Neurosciences.

[34]  Szonya Durant,et al.  Temporal dependence of local motion induced shifts in perceived position , 2004, Vision Research.

[35]  Katsumi Watanabe,et al.  Asymmetric Mislocalization of a Visual Flash Ahead of and behind a Moving Object , 2005, Perception.

[36]  Gopathy Purushothaman,et al.  Moving ahead through differential visual latency , 1998, Nature.

[37]  David Whitney,et al.  Motion distorts visual space: shifting the perceived position of remote stationary objects , 2000, Nature Neuroscience.

[38]  A Straube,et al.  Mislocalization of peripheral targets during fixation , 2001, Vision Research.

[39]  R. Snowden,et al.  Shifts in perceived position following adaptation to visual motion , 1998, Current Biology.

[40]  R. Born,et al.  Segregation of global and local motion processing in primate middle temporal visual area , 1993, Nature.

[41]  Terrence J Sejnowski,et al.  Motion signals bias localization judgments: a unified explanation for the flash-lag, flash-drag, flash-jump, and Frohlich illusions. , 2007, Journal of vision.

[42]  Romi Nijhawan,et al.  Predictive perceptions, predictive actions, and beyond , 2008, Behavioral and Brain Sciences.

[43]  Friedrich W. Fröhlich,et al.  Über die Messung der Empfindungszeit , 1930 .

[44]  W. Metzger,et al.  Versuch einer gemeinsamen Theorie der Phänomene Fröhlichs und Hazelhoffs und Kritik ihrer Verfahren zur Messung der Empfindungszeit , 1932 .

[45]  V. Ramachandran,et al.  Illusory Displacement of Equiluminous Kinetic Edges , 1990, Perception.

[46]  David C. Burr,et al.  How does binocular delay give information about depth? , 1979, Vision Research.

[47]  T. Radil,et al.  Selective directional sensitivity in visual motion perception , 1991, Vision Research.

[48]  A. P. Mapp,et al.  Visual localization of briefly presented peripheral targets , 2004, Biological Cybernetics.

[49]  Shinsuke Shimojo,et al.  Compensation of neural delays in visual‐motor behaviour: No evidence for shorter afferent delays for visual motion , 2004 .

[50]  G. L. Walls,et al.  The Vertebrate Eye and Its Adaptive Radiation , 1943 .

[51]  Romi Nijhawan,et al.  Visual prediction: Psychophysics and neurophysiology of compensation for time delays , 2008, Behavioral and Brain Sciences.

[52]  Ryota Kanai,et al.  Stopping the motion and sleuthing the flash-lag effect: spatial uncertainty is the key to perceptual mislocalization , 2004, Vision Research.

[53]  V. S. Ramachandran,et al.  Interaction between colour and motion in human vision , 1987, Nature.

[54]  Shinsuke Shimojo,et al.  Perceptual organization of moving stimuli modulates the flash-lag effect. , 2001, Journal of experimental psychology. Human perception and performance.

[55]  K. Duncker,et al.  Über induzierte Bewegung , 1929 .