Maximal inequalities for stochastic convolutions and pathwise uniform convergence of time discretisation schemes

We prove a new Burkholder-Rosenthal type inequality for discrete-time processes taking values in a 2-smooth Banach space. As a first application we prove that if $(S(t,s))_{0\leq s\leq T}$ is a $C_0$-evolution family of contractions on a $2$-smooth Banach space $X$ and $(W_t)_{t\in [0,T]}$ is a cylindrical Brownian motion on a probability space $(\Omega,P)$, then for every $0<p<\infty$ there exists a constant $C_{p,X}$ such that for all progressively measurable processes $g: [0,T]\times \Omega\to X$ the process $(\int_0^t S(t,s)g_sdW_s)_{t\in [0,T]}$ has a continuous modification and $$E\sup_{t\in [0,T]}\Big\| \int_0^t S(t,s)g_sdW_s \Big\|^p\leq C_{p,X}^p \mathbb{E} \Bigl(\int_0^T \| g_t\|^2_{\gamma(H,X)}dt\Bigr)^{p/2}.$$ Moreover, for $2\leq p<\infty$ one may take $C_{p,X} = 10 D \sqrt{p},$ where $D$ is the constant in the definition of $2$-smoothness for $X$. Our result improves and unifies several existing maximal estimates and is even new in case $X$ is a Hilbert space. Similar results are obtained if the driving martingale $g_tdW_t$ is replaced by more general $X$-valued martingales $dM_t$. Moreover, our methods allow for random evolution systems, a setting which appears to be completely new as far as maximal inequalities are concerned. As a second application, for a large class of time discretisation schemes we obtain stability and pathwise uniform convergence of time discretisation schemes for solutions of linear SPDEs $$ du_t = A(t)u_tdt + g_tdW_t, \quad u_0 = 0,$$ Under spatial smoothness assumptions on the inhomogeneity $g$, contractivity is not needed and explicit decay rates are obtained. In the parabolic setting this sharpens several know estimates in the literature; beyond the parabolic setting this seems to provide the first systematic approach to pathwise uniform convergence to time discretisation schemes.

[1]  Assaf Naor,et al.  On the Banach-Space-Valued Azuma Inequality and Small-Set Isoperimetry of Alon–Roichman Graphs , 2010, Combinatorics, Probability and Computing.

[2]  Z. Brzeźniak SOME REMARKS ON ITÔ AND STRATONOVICH INTEGRATION IN 2-SMOOTH BANACH SPACES , 2003 .

[3]  Sonja G. Cox,et al.  Stochastic integration in quasi-Banach spaces , 2006, Studia Mathematica.

[4]  Jan Seidler Da Prato-Zabczyk's maximal inequality revisited. I. , 1993 .

[5]  I. Pinelis OPTIMUM BOUNDS FOR THE DISTRIBUTIONS OF MARTINGALES IN BANACH SPACES , 1994, 1208.2200.

[6]  P. Hitczenko Best Constants in Martingale Version of Rosenthal's Inequality , 1990 .

[7]  C. Kuehn,et al.  Pathwise mild solutions for quasilinear stochastic partial differential equations , 2018, Journal of Differential Equations.

[8]  M. Veraar,et al.  Analysis in Banach Spaces: Volume I: Martingales and Littlewood-Paley Theory , 2016 .

[9]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[10]  Arnulf Jentzen Pathwise Numerical Approximations of SPDEs with Additive Noise under Non-global Lipschitz Coefficients , 2009 .

[11]  Yu. L. Daletskiǐ,et al.  Stochastic Equations and Differential Geometry , 1990 .

[12]  I. Gyöngy,et al.  On the splitting-up method and stochastic partial differential equations , 2003 .

[13]  I. Yaroslavtsev Burkholder–Davis–Gundy Inequalities in UMD Banach Spaces , 2018, Communications in Mathematical Physics.

[14]  Martin Ondreját,et al.  Uniqueness for stochastic evolution equations in Banach spaces , 2004 .

[15]  John Reid,et al.  Semi-Groups of Operators and Approximation , 1969 .

[16]  D. Nualart,et al.  Implicit Scheme for Stochastic Parabolic Partial Diferential Equations Driven by Space-Time White Noise , 1997 .

[17]  Erika Hausenblas,et al.  Pathwise space approximations of semi-linear parabolic SPDEs with multiplicative noise , 2012, Int. J. Comput. Math..

[18]  A. Gomilko,et al.  A general approach to approximation theory of operator semigroups , 2018, Journal de Mathématiques Pures et Appliquées.

[19]  Jiahui Zhu,et al.  Maximal Inequalities and Exponential Estimates for Stochastic Convolutions Driven by Lévy-type Processes in Banach Spaces with Application to Stochastic Quasi-Geostrophic Equations , 2019, SIAM J. Math. Anal..

[20]  Erika Hausenblas,et al.  Maximal inequality of Stochastic convolution driven by compensated Poisson random measures in Banach spaces , 2010, 1005.1600.

[21]  Zdzisław Brzeźniak,et al.  Stochastic partial differential equations in M-type 2 Banach spaces , 1995 .

[22]  M. Veraar,et al.  Stochastic Integration in Banach Spaces - a Survey , 2013, 1304.7575.

[23]  M. Veraar,et al.  Maximal estimates for stochastic convolutions in 2-smooth Banach spaces and applications to stochastic evolution equations , 2020, 2006.08325.

[24]  Jan van Neerven,et al.  Pathwise Hölder convergence of the implicit-linear Euler scheme for semi-linear SPDEs with multiplicative noise , 2013, Numerische Mathematik.

[25]  Jorge A. León,et al.  Stochastic evolution equations with random generators , 1998 .

[26]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[27]  Jerzy Zabczyk,et al.  Regularity of solutions of linear stochastic equations in hilbert spaces , 1988 .

[28]  Frank Neubrander,et al.  Consistency and Stabilization of Rational Approximation Schemes for C 0 -semigroups , 2003 .

[29]  E. Dettweiler On the martingale problem for Banach space valued stochastic differential equations , 1989 .

[30]  Xiaojie Wang,et al.  An Exponential Integrator Scheme for Time Discretization of Nonlinear Stochastic Wave Equation , 2013, J. Sci. Comput..

[31]  M. Veraar,et al.  Forward integration, convergence and nonadapted pointwise multipliers , 2013, 1310.6961.

[32]  W. Woyczynski Geometry and Martingales in Banach Spaces , 2018 .

[33]  G. Pisier Martingales with values in uniformly convex spaces , 1975 .

[34]  Mark Veraar,et al.  A note on maximal estimates for stochastic convolutions , 2010, 1004.5061.

[35]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[36]  Mikael Signahl,et al.  Numerical Approximation for a White Noise Driven SPDE with Locally Bounded Drift , 2005 .

[37]  Jan van Neerven,et al.  Maximal Lp-Regularity for Stochastic Evolution Equations , 2011, SIAM J. Math. Anal..

[38]  M. T. Mohan,et al.  Stochastic quasilinear evolution equations in UMD Banach spaces , 2017 .

[39]  Jan van Neerven,et al.  A maximal inequality for stochastic convolutions in 2-smooth Banach spaces , 2011 .

[40]  Arnulf Jentzen,et al.  Convergence in Hölder norms with applications to Monte Carlo methods in infinite dimensions , 2020, IMA Journal of Numerical Analysis.

[41]  E. Hairer,et al.  Stiff and differential-algebraic problems , 1991 .

[42]  Mihály Kovács,et al.  On the convergence of rational approximations of semigroups on intermediate spaces , 2007, Math. Comput..

[43]  I. Gyöngy Lattice Approximations for Stochastic Quasi-Linear Parabolic Partial Differential Equations Driven by Space-Time White Noise I , 1998 .

[44]  Pawel Hitczenko,et al.  Comparison of moments for tangent sequences of random variables , 1988 .

[45]  M. Veraar,et al.  Stochastic evolution equations in UMD Banach spaces , 2008, 0804.0932.

[46]  M. Ondreját,et al.  On existence of progressively measurable modifications , 2013 .

[47]  Martin Ondreját Brownian Representations of Cylindrical Local Martingales, Martingale Problem and Strong Markov Property of Weak Solutions of SPDEs in Banach Spaces , 2005 .

[48]  P. Balachandran Stochastic Integration , 2021, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[49]  I. Gyöngy Lattice Approximations for Stochastic Quasi-Linear Parabolic Partial Differential Equations driven by Space-Time White Noise II , 1999 .

[50]  P. Kotelenez A submartingale type inequality with applicatinos to stochastic evolution equations , 1982 .

[51]  Erika Hausenblas,et al.  A Note on Maximal Inequality for Stochastic Convolutions , 2001 .

[52]  D. Nualart,et al.  Implicit scheme for quasi-linear parabolic partial differential equations perturbed by space-time white noise , 1995 .

[53]  R. DeVille,et al.  Smoothness and renormings in Banach spaces , 1993 .

[54]  M. Veraar,et al.  Cylindrical continuous martingales and stochastic integration in infinite dimensions , 2016, 1602.03996.

[55]  Jan Seidler Exponential Estimates for Stochastic Convolutions in 2-smooth Banach Spaces , 2010 .

[56]  M. Veraar,et al.  Stochastic maximal regularity for rough time-dependent problems , 2018, Stochastics and Partial Differential Equations: Analysis and Computations.

[57]  Lutz Dümbgen,et al.  Nemirovski's Inequalities Revisited , 2008, Am. Math. Mon..

[58]  Tosio Kato,et al.  High-Accuracy Stable Difference Schemes for Well-Posed Initial-Value Problems , 1979 .

[59]  D. Burkholder Distribution Function Inequalities for Martingales , 1973 .

[60]  V. Thomée,et al.  ON RATIONAL APPROXIMATIONS OF SEMIGROUPS , 1979 .

[61]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[62]  C. Kuehn,et al.  Random attractors via pathwise mild solutions for stochastic parabolic evolution equations , 2020, Journal of Evolution Equations.

[63]  Jan Seidler,et al.  Stochastic Convolutions Driven by Martingales: Maximal Inequalities and Exponential Integrability , 2007 .

[65]  Jan van Neerven,et al.  Analysis in Banach Spaces , 2023, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics.

[66]  M. Veraar,et al.  Analysis in Banach Spaces: Volume II: Probabilistic Methods and Operator Theory , 2019 .

[67]  M. Veraar,et al.  Nonlinear parabolic stochastic evolution equations in critical spaces Part I. Stochastic maximal regularity and local existence , 2020, Nonlinearity.

[68]  Jialin Hong,et al.  Strong convergence rates of semidiscrete splitting approximations for the stochastic Allen–Cahn equation , 2018, IMA Journal of Numerical Analysis.

[69]  Catherine E. Powell,et al.  An Introduction to Computational Stochastic PDEs , 2014 .

[70]  Z. Brzeźniak On stochastic convolution in banach spaces and applications , 1997 .

[71]  Francesco Russo,et al.  Forward, backward and symmetric stochastic integration , 1993 .

[72]  Yuri Tomilov,et al.  On convergence rates in approximation theory for operator semigroups , 2013, 1307.1626.

[73]  Vidar Thomée,et al.  Stability and Convergence Rates in $L^p$ for Certain Difference Schemes. , 1970 .

[74]  David Williams,et al.  Probability with Martingales , 1991, Cambridge mathematical textbooks.

[75]  P. Kloeden,et al.  Taylor Approximations for Stochastic Partial Differential Equations , 2011 .

[76]  Strong martingale type and uniform smoothness , 2004, math/0407482.

[77]  J. Maas,et al.  A Clark-Ocone formula in UMD Banach spaces , 2007, 0709.2021.

[78]  T. Figiel On the moduli of convexity and smoothness , 1976 .

[79]  Charles-Edouard Br'ehier,et al.  Analysis of some splitting schemes for the stochastic Allen-Cahn equation , 2018, Discrete & Continuous Dynamical Systems - B.

[80]  Szymon Peszat,et al.  Large deviation principle for stochastic evolution equations , 1994 .

[81]  A perturbation result for semi-linear stochastic differential equations in UMD Banach spaces , 2012, 1203.1606.

[82]  Akira Ichikawa,et al.  Some inequalities for martingales and stochastic convolutions , 1986 .

[83]  P. Kotelenez A stopped Doob inequality for stochastic convolution integrals and stochastic evolution equations , 1984 .

[84]  M. Röckner,et al.  Stochastic Partial Differential Equations: An Introduction , 2015 .

[85]  Jan van Neerven,et al.  Convergence Rates of the Splitting Scheme for Parabolic Linear Stochastic Cauchy Problems , 2009, SIAM J. Numer. Anal..

[86]  I. Yaroslavtsev Local characteristics and tangency of vector-valued martingales , 2019, Probability Surveys.

[87]  J. Neerven,et al.  WEAK LIMITS AND INTEGRALS OF GAUSSIAN COVARIANCES IN BANACH SPACES , 2008 .

[88]  Paul L. Butzer,et al.  Semi-groups of operators and approximation , 1967 .

[89]  L. Tubaro,et al.  An estimate of Burkholder type for stochastic processes defined by the stochastic integral , 1984 .

[90]  Mark Veraar,et al.  A new approach to stochastic evolution equations with adapted drift , 2013, 1312.0889.

[91]  V. Thomée,et al.  Finite-Element Methods for a Strongly Damped Wave Equation , 1991 .

[92]  G. Pisier Martingales in Banach Spaces , 2016 .

[93]  D. Burkholder Sharp inequalities for martingales and stochastic integrals , 1988 .

[94]  Hyek Yoo,et al.  Semi-discretization of stochastic partial differential equations on R1 by a finite-difference method , 2000, Math. Comput..

[95]  Thorsten Gerber,et al.  Semigroups Of Linear Operators And Applications To Partial Differential Equations , 2016 .

[96]  L. Weis,et al.  $H^\infty $ calculus and dilatations , 2006 .

[97]  Annie Millet,et al.  Rate of Convergence of Space Time Approximations for Stochastic Evolution Equations , 2007, 0706.1404.

[98]  Stig Larsson,et al.  The stability of rational approximations of analytic semigroups , 1993 .

[99]  S. Dirksen,et al.  Lq ‐valued Burkholder–Rosenthal inequalities and sharp estimates for stochastic integrals , 2017, Proceedings of the London Mathematical Society.

[100]  Catherine Doleans Variation Quadratique Des Martingales Continues a Droite , 1969 .

[101]  P. Chow,et al.  Large deviation problem for some parabolic itǒ equations , 1992 .

[102]  D. Filipović,et al.  Jump-diffusions in Hilbert spaces: existence, stability and numerics , 2008, 0810.5023.

[103]  Annie Millet,et al.  Rate of Convergence of Implicit Approximations for stochastic evolution equations , 2006 .

[104]  Stochastic quasi-linear partial differential equations of evolution , 2015 .

[105]  Sjoerd Dirksen,et al.  Itô isomorphisms for $L^{p}$-valued Poisson stochastic integrals , 2012, 1208.3885.