Gaussian states of continuous-variable quantum systems provide universal and versatile reservoir computing

Quantum reservoir computing aims at harnessing the rich dynamics of quantum systems for machine-learning purposes. It can be used for online time series processing while having a remarkably low training cost. Here, we establish the potential of continuous-variable Gaussian states of linear dynamical systems for quantum reservoir computing. We prove that Gaussian resources are enough for universal reservoir computing. We find that encoding the input into Gaussian states is both a source and a means to tune the nonlinearity of the overall input-output map. We further show that the full potential of the proposed model can be reached by encoding to quantum fluctuations, such as squeezed vacuum, instead of classical fields or thermal fluctuations. Our results introduce a research paradigm for reservoir computing harnessing quantum systems and engineered Gaussian quantum states. Most attempts to delineate quantum machine-learning-related computing capabilities of continuous variables states have relied on non-Gaussian resources. Here, the authors show that linear systems with continuous-variable Gaussian states are a promising platform for the implementation of quantum reservoir computers with universal approximation capabilities

[1]  Laurent Larger,et al.  High-Speed Photonic Reservoir Computing Using a Time-Delay-Based Architecture: Million Words per Second Classification , 2017 .

[2]  Maria Schuld,et al.  The quest for a Quantum Neural Network , 2014, Quantum Information Processing.

[3]  Herbert Jaeger,et al.  Reservoir computing approaches to recurrent neural network training , 2009, Comput. Sci. Rev..

[4]  Nils Bertschinger,et al.  Real-Time Computation at the Edge of Chaos in Recurrent Neural Networks , 2004, Neural Computation.

[5]  Y. Cai,et al.  Multimode entanglement in reconfigurable graph states using optical frequency combs , 2017, Nature Communications.

[6]  Peter Wittek,et al.  Quantum Machine Learning: What Quantum Computing Means to Data Mining , 2014 .

[7]  Giulia Ferrini,et al.  Polynomial approximation of non-Gaussian unitaries by counting one photon at a time , 2017, 1703.06693.

[8]  A. Politi,et al.  Continuous-variable entanglement on a chip , 2015, Nature Photonics.

[9]  Timothy C. Ralph,et al.  Quantum information with continuous variables , 2000, Conference Digest. 2000 International Quantum Electronics Conference (Cat. No.00TH8504).

[10]  L. C. G. Govia,et al.  Quantum reservoir computing with a single nonlinear oscillator , 2020, Physical Review Research.

[11]  Andrzej Opala,et al.  Reconstructing Quantum States With Quantum Reservoir Networks , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[12]  Gerardo Adesso,et al.  Continuous Variable Quantum Information: Gaussian States and Beyond , 2014, Open Syst. Inf. Dyn..

[13]  Alicia J. Kollár,et al.  Hyperbolic lattices in circuit quantum electrodynamics , 2018, Nature.

[14]  Dzung Viet Dao,et al.  Integrated photonic platform for quantum information with continuous variables , 2018, Science Advances.

[15]  E. Torrontegui,et al.  Unitary quantum perceptron as efficient universal approximator , 2018, EPL (Europhysics Letters).

[16]  Tara N. Sainath,et al.  Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups , 2012, IEEE Signal Processing Magazine.

[17]  Jason Cong,et al.  Scaling for edge inference of deep neural networks , 2018 .

[18]  N. C. Menicucci,et al.  Quantum Computing with Continuous-Variable Clusters , 2009, 0903.3233.

[19]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[20]  Hitoshi Kubota,et al.  Role of non-linear data processing on speech recognition task in the framework of reservoir computing , 2019, Scientific Reports.

[21]  Keisuke Fujii,et al.  Harnessing disordered quantum dynamics for machine learning , 2016, 1602.08159.

[22]  Andrew S. Cassidy,et al.  A million spiking-neuron integrated circuit with a scalable communication network and interface , 2014, Science.

[23]  Daniel Brunner,et al.  Parallel photonic information processing at gigabyte per second data rates using transient states , 2013, Nature Communications.

[24]  Davide Pierangeli,et al.  Programming multi-level quantum gates in disordered computing reservoirs via machine learning , 2019, Optics express.

[25]  T. Ralph,et al.  Universal quantum computation with continuous-variable cluster states. , 2006, Physical review letters.

[26]  Michael I. Jordan,et al.  Machine learning: Trends, perspectives, and prospects , 2015, Science.

[27]  Jyrki Piilo,et al.  Non-Markovianity over Ensemble Averages in Quantum Complex Networks , 2017, Open Syst. Inf. Dyn..

[28]  I. Fuentes,et al.  Generating Multimode Entangled Microwaves with a Superconducting Parametric Cavity , 2017, Physical Review Applied.

[29]  Serge Massar,et al.  All-optical Reservoir Computing , 2012, Optics express.

[30]  Albert Schliesser,et al.  Multimode optomechanical system in the quantum regime , 2016, Proceedings of the National Academy of Sciences.

[31]  H. Nurdin,et al.  Temporal Information Processing on Noisy Quantum Computers , 2020, Physical Review Applied.

[32]  A. Serafini Quantum Continuous Variables: A Primer of Theoretical Methods , 2017 .

[33]  Geert Morthier,et al.  Experimental demonstration of reservoir computing on a silicon photonics chip , 2014, Nature Communications.

[34]  Razvan Pascanu,et al.  On the difficulty of training recurrent neural networks , 2012, ICML.

[35]  Henry Markram,et al.  On the computational power of circuits of spiking neurons , 2004, J. Comput. Syst. Sci..

[36]  Hidehiro Yonezawa,et al.  Emulating quantum cubic nonlinearity , 2013 .

[37]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[38]  Hans-J. Briegel,et al.  Machine learning \& artificial intelligence in the quantum domain , 2017, ArXiv.

[39]  Jaideep Pathak,et al.  Model-Free Prediction of Large Spatiotemporally Chaotic Systems from Data: A Reservoir Computing Approach. , 2018, Physical review letters.

[40]  Shuntaro Takeda,et al.  On-demand photonic entanglement synthesizer , 2018, Science Advances.

[41]  S. Olivares,et al.  Gaussian States in Quantum Information , 2005 .

[42]  Dirk Englund,et al.  Quantum optical neural networks , 2018, npj Quantum Information.

[43]  Kohei Nakajima,et al.  Machine learning with controllable quantum dynamics of a nuclear spin ensemble in a solid , 2018, 1806.10910.

[44]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[45]  Keisuke Fujii,et al.  Boosting Computational Power through Spatial Multiplexing in Quantum Reservoir Computing , 2018, Physical Review Applied.

[46]  A. Friedman Foundations of modern analysis , 1970 .

[47]  Changpeng Shao,et al.  A quantum model of feed-forward neural networks with unitary learning algorithms , 2020, Quantum Information Processing.

[48]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[49]  M. C. Soriano,et al.  Advances in photonic reservoir computing , 2017 .

[50]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[51]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..

[52]  Benjamin Schrauwen,et al.  Information Processing Capacity of Dynamical Systems , 2012, Scientific Reports.

[53]  Debanjan Bhowmik,et al.  Supervised learning with a quantum classifier using multi-level systems , 2019, Quantum Inf. Process..

[54]  M. C. Soriano,et al.  Information Processing Capacity of Spin-Based Quantum Reservoir Computing Systems , 2020, Cognitive Computation.

[55]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[56]  Gouhei Tanaka,et al.  Reservoir Computing With Spin Waves Excited in a Garnet Film , 2018, IEEE Access.

[57]  Jacob biamonte,et al.  Quantum machine learning , 2016, Nature.

[58]  Harald Haas,et al.  Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication , 2004, Science.

[59]  Christian Weedbrook,et al.  ON states as resource units for universal quantum computation with photonic architectures , 2018, Physical Review A.

[60]  Miguel C. Soriano,et al.  Minimal approach to neuro-inspired information processing , 2015, Front. Comput. Neurosci..

[61]  Zoran Konkoli,et al.  On Reservoir Computing: From Mathematical Foundations to Unconventional Applications , 2017 .

[62]  Tobias J. Osborne,et al.  Training deep quantum neural networks , 2020, Nature Communications.

[63]  A. Kutvonen,et al.  Optimizing a quantum reservoir computer for time series prediction , 2018, Scientific Reports.

[64]  Henry Markram,et al.  Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations , 2002, Neural Computation.

[65]  Jiayin Chen,et al.  Learning nonlinear input–output maps with dissipative quantum systems , 2019, Quantum Information Processing.

[66]  Su Yang,et al.  An echo state network architecture based on quantum logic gate and its optimization , 2020, Neurocomputing.

[67]  E. Schrödinger Der stetige Übergang von der Mikro- zur Makromechanik , 1926, Naturwissenschaften.

[68]  Benjamin Schrauwen,et al.  An experimental unification of reservoir computing methods , 2007, Neural Networks.

[69]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[70]  U. Böttger,et al.  Beyond von Neumann—logic operations in passive crossbar arrays alongside memory operations , 2012, Nanotechnology.

[71]  I. Chuang,et al.  Programmable Quantum Gate Arrays , 1997, quant-ph/9703032.

[72]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[73]  Toshiyuki Yamane,et al.  Recent Advances in Physical Reservoir Computing: A Review , 2018, Neural Networks.

[74]  Damien Querlioz,et al.  Neuromorphic computing with nanoscale spintronic oscillators , 2017, Nature.

[75]  Daniel J. Gauthier,et al.  Rapid Time Series Prediction with a Hardware-Based Reservoir Computer , 2018, Chaos.

[76]  Andrzej Opala,et al.  Quantum reservoir processing , 2018, npj Quantum Information.

[77]  Gerardo Adesso,et al.  Gaussian quantum resource theories , 2018, Physical Review A.

[78]  Nicolas Treps,et al.  Reconfigurable optical implementation of quantum complex networks , 2017, 1708.08726.

[79]  Warit Asavanant,et al.  Generation of time-domain-multiplexed two-dimensional cluster state , 2019, Science.

[80]  Jonathan Dong,et al.  Optical Reservoir Computing Using Multiple Light Scattering for Chaotic Systems Prediction , 2019, IEEE Journal of Selected Topics in Quantum Electronics.

[81]  Juan-Pablo Ortega,et al.  Echo state networks are universal , 2018, Neural Networks.

[82]  Juan-Pablo Ortega,et al.  Universal discrete-time reservoir computers with stochastic inputs and linear readouts using non-homogeneous state-affine systems , 2017, J. Mach. Learn. Res..

[83]  Ryuji Takagi,et al.  Convex resource theory of non-Gaussianity , 2018, Physical Review A.

[84]  M. Kubát An Introduction to Machine Learning , 2017, Springer International Publishing.

[85]  Surya Ganguli,et al.  Memory traces in dynamical systems , 2008, Proceedings of the National Academy of Sciences.

[86]  Roger Melko,et al.  Quantum Boltzmann Machine , 2016, 1601.02036.

[87]  Herbert Jaeger,et al.  The''echo state''approach to analysing and training recurrent neural networks , 2001 .

[88]  Wojciech M. Czarnecki,et al.  Grandmaster level in StarCraft II using multi-agent reinforcement learning , 2019, Nature.

[89]  Igor Jex,et al.  Gaussian Boson sampling , 2016, 2017 Conference on Lasers and Electro-Optics (CLEO).

[90]  Jean-Pierre Martens,et al.  Large Vocabulary Continuous Speech Recognition With Reservoir-Based Acoustic Models , 2014, IEEE Signal Processing Letters.

[91]  Olivier Pfister,et al.  Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb. , 2013, Physical review letters.

[92]  P. Grangier,et al.  Production and applications of non-Gaussian quantum states of light , 2020, 2006.16985.

[93]  Leon O. Chua,et al.  Fading memory and the problem of approximating nonlinear operators with volterra series , 1985 .

[94]  Seth Lloyd,et al.  Continuous-variable quantum neural networks , 2018, Physical Review Research.

[95]  Viola Priesemann,et al.  Control of criticality and computation in spiking neuromorphic networks with plasticity , 2020, Nature Communications.

[96]  M. Paris,et al.  Resource theory of quantum non-Gaussianity and Wigner negativity , 2018, Physical Review A.

[97]  Wei Lu,et al.  The future of electronics based on memristive systems , 2018, Nature Electronics.