Grain Size Effect on Dielectric Properties of Ba0.92Ca0.08TiO3 Ceramics

We demonstrated the grain size effect on the dielectric properties of Ba0.92Ca0.08TiO3 ceramics. Fine-grained Ba0.92Ca0.08TiO3 ceramics with micrometer- and nanometer-sized grains were fabricated by the two-step sintering method and aerosol deposition method, respectively. The permittivity of Ba0.92Ca0.08TiO3 ceramics increased with decreasing grain size when the grain size was more than 400 nm, whereas it decreased when the grain size was below 400 nm. The permittivity of Ba0.92Ca0.08TiO3 ceramics with micrometer-sized grains was lower than that of BaTiO3 ceramics. This was caused by the hardening of the soft mode and the decrease in the 90° domain-wall contribution by Ca substitution. Moreover, the grain size that gave the maximum permittivity for Ba0.92Ca0.08TiO3 ceramics was lower than that for BaTiO3 ceramics. This result suggested that the Ba0.92Ca0.08TiO3 was less sensitive to the grain size effect than BaTiO3 ceramics. These features in the grain size dependence of permittivity were explained by the tetragonal structure stability of Ba0.92Ca0.08TiO3.

[1]  T. Tsurumi,et al.  Domain Contribution to Dielectric Properties of Fine-Grained BaTiO3 Ceramics , 2009 .

[2]  J. Woicik,et al.  Local-structure origins of the sustained Curie temperature in (Ba,Ca)TiO3 ferroelectrics , 2013 .

[3]  T. Hoshina,et al.  Size Effect of Barium Titanate and Computer-Aided Design of Multilayered Ceramic Capacitors , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[4]  C. Randall,et al.  Preparation and Size Effect in Pure Nanocrystalline Barium Titanate Ceramics , 2003 .

[5]  Zhe Zhao,et al.  Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO 3 ceramics , 2004 .

[6]  G. Arlt,et al.  Dielectric properties of fine‐grained barium titanate ceramics , 1985 .

[7]  T. Tsurumi,et al.  Effects of oxygen vacancies and grain sizes on the dielectric response of BaTiO3 , 2010 .

[8]  T. Tsurumi,et al.  Ultrawideband dielectric spectroscopy of BaZrxTi1−xO3 ceramics and its microscopic mechanism of polarization , 2009 .

[9]  Liyu Li,et al.  Two‐Step Sintering of Ceramics with Constant Grain‐Size, II: BaTiO3 and Ni–Cu–Zn Ferrite , 2006 .

[10]  M. Itoh,et al.  Anomalous phase diagram of ferroelectric (Ba,Ca)TiO3 single crystals with giant electromechanical response. , 2008, Physical review letters.

[11]  T. Tsurumi,et al.  Shrinkage Behaviors and Sintering Mechanism of BaTiO , 2011 .

[12]  C. Randall,et al.  A Novel Approach to Sintering Nanocrystalline Barium Titanate Ceramics , 2005 .

[13]  S. Wada,et al.  Dielectric relaxation in gigahertz region and phase transition of BaTiO3-based ceramics , 2006 .

[14]  I. Chen,et al.  Sintering dense nanocrystalline ceramics without final-stage grain growth , 2000, Nature.

[15]  T. Yamazaki,et al.  Grain Size Effect on Dielectric Properties of Ba(Zr,Ti)O3 Ceramics , 2012 .

[16]  M. Nakada,et al.  Ultrawide range dielectric spectroscopy of BaTiO3-based perovskite dielectrics , 2007 .

[17]  Kyoichi Kinoshita,et al.  Grain‐size effects on dielectric properties in barium titanate ceramics , 1976 .

[18]  Y. Ishibashi,et al.  Consideration on the Phase Diagrams of Ferroelectric (Ba,Ca)TiO3 , 2009 .

[19]  T. Okajima,et al.  Local structure of Ca dopant in BaTiO3 by Ca K-edge X-ray absorption near-edge structure and first-principles calculations , 2010 .

[20]  T. Tsurumi,et al.  Wide Band Dielectric Spectroscopy at Ferroelectric Phase Transition of BaTiO3 Ceramics , 2010 .

[21]  Jun Akedo,et al.  Microstructure and Electrical Properties of Lead Zirconate Titanate (Pb(Zr52/Ti48)O3) Thick Films Deposited by Aerosol Deposition Method , 1999 .

[22]  S. Wada,et al.  Composite Structure and Size Effect of Barium Titanate Nanoparticles , 2007, 2007 Sixteenth IEEE International Symposium on the Applications of Ferroelectrics.

[23]  François Gervais,et al.  Temperature dependence of transverse- and longitudinal-optic modes in TiO 2 (rutile) , 1974 .

[24]  R. Roy,et al.  Phase Equilibria in the System BaTiO3—CaTiO3 , 1955 .

[25]  T. Hoshina Size effect of barium titanate: fine particles and ceramics , 2013 .

[26]  Jun Akedo,et al.  Piezoelectric properties and poling effect of Pb(Zr, Ti)O3 thick films prepared for microactuators by aerosol deposition , 2000 .

[27]  Zhengkui Xu,et al.  The role of interfaces on an apparent grain size effect on the dielectric properties for ferroelectric barium titanate ceramics , 1998 .

[28]  Shashank Priya,et al.  Enhanced domain contribution to ferroelectric properties in freestanding thick films , 2009 .

[29]  T. Tsurumi,et al.  Controlling factors of film-thickness in improved aerosol deposition method , 2009 .

[30]  C. Randall,et al.  A modified Vegard’s law for multisite occupancy of Ca in BaTiO3–CaTiO3 solid solutions , 2008 .

[31]  Takaaki Tsurumi,et al.  Size Effect of Nanograined BaTiO3 Ceramics Fabricated by Aerosol Deposition Method , 2010 .

[32]  T. Tsurumi,et al.  Wide range dielectric spectroscopy on perovskite dielectrics , 2009 .

[33]  H. Kakemoto,et al.  Domain Size Effect on Dielectric Properties of Barium Titanate Ceramics , 2008 .

[34]  W. Westphal,et al.  Dielectric and X-Ray Studies of CaxBa1-xTiO3 and CaxSr1-xTiO3 , 1961 .

[35]  G. Arlt Twinning in ferroelectric and ferroelastic ceramics: stress relief , 1990 .

[36]  Masatoshi Adachi,et al.  Lead-Free Piezoelectric Ceramics with Large Dielectric and Piezoelectric Constants Manufactured from BaTiO3 Nano-Powder , 2007 .

[37]  Shrinkage Behaviors and Sintering Mechanism of BaTiO3Ceramics in Two-Step Sintering , 2011 .

[38]  Jun Akedo,et al.  Powder Preparation in Aerosol Deposition Method for Lead Zirconate Titanate Thick Films , 2002 .