An integrated clinical program and crowdsourcing strategy for genomic sequencing and Mendelian disease gene discovery

Despite major progress in defining the genetic basis of Mendelian disorders, the molecular etiology of many cases remains unknown. Patients with these undiagnosed disorders often have complex presentations and require treatment by multiple health care specialists. Here, we describe an integrated clinical diagnostic and research program using whole-exome and whole-genome sequencing (WES/WGS) for Mendelian disease gene discovery. This program employs specific case ascertainment parameters, a WES/WGS computational analysis pipeline that is optimized for Mendelian disease gene discovery with variant callers tuned to specific inheritance modes, an interdisciplinary crowdsourcing strategy for genomic sequence analysis, matchmaking for additional cases, and integration of the findings regarding gene causality with the clinical management plan. The interdisciplinary gene discovery team includes clinical, computational, and experimental biomedical specialists who interact to identify the genetic etiology of the disease, and when so warranted, to devise improved or novel treatments for affected patients. This program effectively integrates the clinical and research missions of an academic medical center and affords both diagnostic and therapeutic options for patients suffering from genetic disease. It may therefore be germane to other academic medical institutions engaged in implementing genomic medicine programs.

Angeliki Pantazi | Nikolaos A Patsopoulos | Ignaty Leshchiner | Joseph Loscalzo | Wolfram Goessling | Christopher A Cassa | Dana Vuzman | Robert C Green | Shamil R Sunyaev | Soumya Raychaudhuri | Nathan O Stitziel | Calum A MacRae | Sharyn A. Lincoln | Ophir D Klein | Christine E Seidman | R. Green | W. Goessling | S. Sunyaev | S. Raychaudhuri | A. Pantazi | J. Loscalzo | O. Klein | J. Stoler | R. Maas | N. Stitziel | S. Snapper | C. Seidman | C. Cassa | Á. Tóth-Petróczy | I. Leshchiner | J. Krier | N. Patsopoulos | P. Sanchez-Lara | C. Macrae | D. Vuzman | K. Kooshesh | A. Bjonnes | D. Sweetser | A. Feldweg | Richard L Maas | Michael Mannstadt | David A Sweetser | Vandana A Gupta | Scott B Snapper | Andrew Bjonnes | Natasha Y Frank | Sameer S Chopra | Joel B Krier | Joan M Stoler | Hazel Perry | Sheila Sutti | N. Carmichael | Alireza Haghighi | C. Nowak | Jodie Ouahed | Kameron Kooshesh | Nikkola Carmichael | Agnes Toth-Petroczy | Elizabeth Fieg | Anwoy Mohanty | Lauren C Briere | Sharyn Lincoln | Stephanie Lucia | Onuralp Söylemez | Haiyan Qiu | Christopher J Fay | Victoria Perroni | Jamie Valerius | Meredith Hanna | Alexander Frank | Anna Feldweg | Eric Liao | Catherine B Nowak | Pedro A Sanchez-Lara | A. Haghighi | N. Frank | H. Perry | L. Briere | M. Mannstadt | S. Chopra | J. Ouahed | E. Fieg | A. Mohanty | Haiyan Qiu | Stephanie Lucia | O. Söylemez | S. Sutti | Christopher J. Fay | V. Perroni | Jamie Valerius | Meredith Hanna | Alexander Frank | E. Liao | C. J. Fay | Elizabeth Fieg | C. Fay | Kameron A. Kooshesh

[1]  S. Sunyaev,et al.  An argument for early genomic sequencing in atypical cases: a WISP3 variant leads to diagnosis of progressive pseudorheumatoid arthropathy of childhood. , 2015, Rheumatology.

[2]  Tina Pesaran,et al.  Utilization of multigene panels in hereditary cancer predisposition testing: analysis of more than 2,000 patients , 2014, Genetics in Medicine.

[3]  Chad A Shaw,et al.  Molecular Diagnostic Experience of Whole-Exome Sequencing in Adult Patients , 2015, Genetics in Medicine.

[4]  A. Munnich,et al.  Heterozygous Mutations in MAP3K7, Encoding TGF-β-Activated Kinase 1, Cause Cardiospondylocarpofacial Syndrome. , 2016, American journal of human genetics.

[5]  B. Han,et al.  Cohort Profile: The Korean Genome and Epidemiology Study (KoGES) Consortium , 2017, International journal of epidemiology.

[6]  J. Gusella,et al.  Actin capping protein CAPZB regulates cell morphology, differentiation, and neural crest migration in craniofacial morphogenesis†. , 2016, Human molecular genetics.

[7]  Pieter B. T. Neerincx,et al.  The Genome of the Netherlands: design, and project goals , 2013, European Journal of Human Genetics.

[8]  Marylyn D. Ritchie,et al.  PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene–disease associations , 2010, Bioinform..

[9]  D. Roden,et al.  Integrating EMR-Linked and In Vivo Functional Genetic Data to Identify New Genotype-Phenotype Associations , 2014, PloS one.

[10]  Magalie S Leduc,et al.  Clinical whole-exome sequencing for the diagnosis of mendelian disorders. , 2013, The New England journal of medicine.

[11]  Marcel H. Schulz,et al.  Clinical diagnostics in human genetics with semantic similarity searches in ontologies. , 2009, American journal of human genetics.

[12]  Magalie S Leduc,et al.  Molecular findings among patients referred for clinical whole-exome sequencing. , 2014, JAMA.

[13]  Peter N. Robinson,et al.  The Human Phenotype Ontology: Semantic Unification of Common and Rare Disease , 2015, American journal of human genetics.

[14]  Daniel Nilsson,et al.  An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge , 2014, Genome Biology.

[15]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[16]  J. Turnlund,et al.  Dietary copper intake influences skin lysyl oxidase in young men , 1997 .

[17]  C. Lian,et al.  Loss of function mutation in LOX causes thoracic aortic aneurysm and dissection in humans , 2016, Proceedings of the National Academy of Sciences.

[18]  Orion J. Buske,et al.  The Matchmaker Exchange: A Platform for Rare Disease Gene Discovery , 2015, Human mutation.

[19]  P. Stenson,et al.  Human Gene Mutation Database (HGMD®): 2003 update , 2003, Human mutation.

[20]  P. Robinson,et al.  The Human Phenotype Ontology: a tool for annotating and analyzing human hereditary disease. , 2008, American journal of human genetics.

[21]  E. Banks,et al.  Discovery and statistical genotyping of copy-number variation from whole-exome sequencing depth. , 2012, American journal of human genetics.

[22]  A. Franke,et al.  Early-onset Crohn’s disease and autoimmunity associated with a variant in CTLA-4 , 2014, Gut.

[23]  C. Klein,et al.  The diagnostic approach to monogenic very early onset inflammatory bowel disease. , 2014, Gastroenterology.

[24]  Aliz R. Rao,et al.  Rich annotation of DNA sequencing variants by leveraging the Ensembl Variant Effect Predictor with plugins , 2015, Briefings Bioinform..

[25]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[26]  Jonathan C. Cohen,et al.  A spectrum of PCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol. , 2006, American journal of human genetics.

[27]  Alexander Hoischen,et al.  Gain-of-function mutations in the mechanically activated ion channel PIEZO2 cause a subtype of Distal Arthrogryposis , 2013, Proceedings of the National Academy of Sciences.

[28]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[29]  Joshua M. Korn,et al.  Discovery and genotyping of genome structural polymorphism by sequencing on a population scale , 2011, Nature Genetics.

[30]  L. Liang,et al.  Improved ancestry estimation for both genotyping and sequencing data using projection procrustes analysis and genotype imputation. , 2015, American journal of human genetics.

[31]  Carl Kesselman,et al.  The FaceBase Consortium: a comprehensive resource for craniofacial researchers , 2016, Development.

[32]  Chaolong Wang,et al.  Ancestry estimation and control of population stratification for sequence-based association studies , 2014, Nature Genetics.

[33]  D. Altshuler,et al.  A map of human genome variation from population-scale sequencing , 2010, Nature.

[34]  Heng Li,et al.  Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly , 2012, Bioinform..

[35]  O. Sanal,et al.  Additional Diverse Findings Expand the Clinical Presentation of DOCK8 Deficiency , 2012, Journal of Clinical Immunology.

[36]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[37]  Alejandro Sifrim,et al.  Genetic diagnosis of developmental disorders in the DDD study: a scalable analysis of genome-wide research data , 2015, The Lancet.

[38]  M. Brown,et al.  Mutations in MAP3K7 that Alter the Activity of the TAK1 Signaling Complex Cause Frontometaphyseal Dysplasia. , 2016, American journal of human genetics.

[39]  G. Bollinger,et al.  Population Study , 2020, Definitions.

[40]  Matthew S. Lebo,et al.  Inherited CHST11/MIR3922 deletion is associated with a novel recessive syndrome presenting with skeletal malformation and malignant lymphoproliferative disease , 2015, Molecular genetics & genomic medicine.

[41]  M. Gerstein,et al.  The Centers for Mendelian Genomics: A new large‐scale initiative to identify the genes underlying rare Mendelian conditions , 2012, American journal of medical genetics. Part A.

[42]  Erick R Scott,et al.  A Genome Sequencing Program for Novel Undiagnosed Diseases , 2015, Genetics in Medicine.

[43]  K. Boycott,et al.  Rare-disease genetics in the era of next-generation sequencing: discovery to translation , 2013, Nature Reviews Genetics.

[44]  H B Newcombe,et al.  Genetic disorders in children and young adults: a population study. , 1988, American journal of human genetics.

[45]  Bok-Ghee Han,et al.  Cohort Profile Cohort Profile : The Korean Genome and Epidemiology Study ( KoGES ) Consortium , 2017 .

[46]  Deanna M. Church,et al.  ClinVar: public archive of relationships among sequence variation and human phenotype , 2013, Nucleic Acids Res..

[47]  P. Stenson,et al.  Genes, mutations, and human inherited disease at the dawn of the age of personalized genomics , 2010, Human mutation.

[48]  Tudor Groza,et al.  The Human Phenotype Ontology in 2017 , 2016, Nucleic Acids Res..

[49]  B. Durbin-Johnson,et al.  Urinary diversion during and after pediatric pyeloplasty: a population based analysis of more than 2,000 patients. , 2014, The Journal of urology.

[50]  William A Gahl,et al.  The NIH Undiagnosed Diseases Program and Network: Applications to modern medicine. , 2016, Molecular genetics and metabolism.

[51]  Alexander Pertsemlidis,et al.  Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9 , 2005, Nature Genetics.

[52]  Nancy F. Hansen,et al.  Accurate Whole Human Genome Sequencing using Reversible Terminator Chemistry , 2008, Nature.

[53]  Jonathan C. Cohen,et al.  Simple Genetics for a Complex Disease , 2013, Science.

[54]  F. Alkuraya,et al.  Identification of a Recognizable Progressive Skeletal Dysplasia Caused by RSPRY1 Mutations. , 2015, American journal of human genetics.

[55]  Rena A. Godfrey,et al.  The National Institutes of Health Undiagnosed Diseases Program: insights into rare diseases , 2011, Genetics in Medicine.

[56]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[57]  Harry Hochheiser,et al.  The FaceBase Consortium: a comprehensive program to facilitate craniofacial research. , 2011, Developmental biology.

[58]  Damian Smedley,et al.  The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data , 2014, Nucleic Acids Res..

[59]  Karynne E. Patterson,et al.  The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges, and Opportunities. , 2015, American journal of human genetics.

[60]  Elizabeth M. Smigielski,et al.  dbSNP: the NCBI database of genetic variation , 2001, Nucleic Acids Res..