Thermoelectric Materials: New Approaches to an Old Problem

Thermoelectrics is an old field. In 1823, Thomas Seebeck discovered that a voltage drop appears across a sample that has a temperature gradient. This phenomenon provided the basis for thermocouples used for measuring temperature and for thermoelectric power generators. In 1838, Heinrich Lenz placed a drop of water on the junction of metal wires made of bismuth and antimony. Passing an electric current through the junction in one direction caused the water to freeze, and reversing the current caused the ice to quickly melt; thus thermoelectric refrigeration was demonstrated (figure 1).

[1]  G. Meisner Superconductivity and magnetic order in ternary rare earth transition metal phosphides , 1981 .

[2]  R. Gambino,et al.  Anomalously large thermoelectric cooling figure of merit in the Kondo systems CePd3 and Celn3 , 1973 .

[3]  G. A. Slack,et al.  The effect of rare‐earth filling on the lattice thermal conductivity of skutterudites , 1996 .

[4]  Watson,et al.  Lower limit to the thermal conductivity of disordered crystals. , 1992, Physical review. B, Condensed matter.

[5]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.

[6]  G. Meisner,et al.  UFe4P12 and CeFe4P12: Nonmetallic isotypes of superconducting LaFe4P12 , 1985 .

[7]  Singh,et al.  Skutterudite antimonides: Quasilinear bands and unusual transport. , 1994, Physical review. B, Condensed matter.

[8]  G. Meisner,et al.  The pressure dependence of the superconducting transition temperature of LaT4P12(T = Fe, Ru, Os) , 1985 .

[9]  Broido Da,et al.  Effect of superlattice structure on the thermoelectric figure of merit. , 1995 .

[10]  G. A. Slack,et al.  Some properties of semiconducting IrSb3 , 1994 .

[11]  Gerald D. Mahan,et al.  Figure of merit for thermoelectrics , 1989 .

[12]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical Review B (Condensed Matter).

[13]  G. Mahan,et al.  The best thermoelectric. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[14]  R. K. Williams,et al.  Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials , 1996, Science.

[15]  W. Jeitschko,et al.  LaFe4P12 with filled CoAs3‐type structure and isotypic lanthanoid–transition metal polyphosphides , 1977 .

[16]  Mildred S. Dresselhaus,et al.  Use of quantum‐well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials , 1993 .

[17]  Donald T. Morelli,et al.  Low temperature properties of the filled skutterudite CeFe4Sb12 , 1995 .

[18]  Takafumi Yao,et al.  Thermal properties of AlAs/GaAs superlattices , 1987 .

[19]  C Wood,et al.  Materials for thermoelectric energy conversion , 1988 .