Novel heterocyclic hydroxamates as inhibitors of the mycobacterial zinc metalloprotease Zmp1 to probe its mechanism of function.

[1]  K. Berka,et al.  Novel thiazolidinedione-hydroxamates as inhibitors of Mycobacterium tuberculosis virulence factor Zmp1. , 2019, European journal of medicinal chemistry.

[2]  Sven Mangelinckx,et al.  The synthesis and in vitro biological evaluation of novel fluorinated tetrahydrobenzo[j]phenanthridine-7,12-diones against Mycobacterium tuberculosis. , 2019, European journal of medicinal chemistry.

[3]  P. Cos,et al.  Opportunities for Overcoming Mycobacterium tuberculosis Drug Resistance: Emerging Mycobacterial Targets and Host-Directed Therapy , 2019, International journal of molecular sciences.

[4]  Mohammad A. Alam Methods for Hydroxamic Acid Synthesis. , 2019, Current organic chemistry.

[5]  H. Derendorf,et al.  Mycobacterium tuberculosis Strains H37ra and H37rv have equivalent minimum inhibitory concentrations to most antituberculosis drugs , 2018, International journal of mycobacteriology.

[6]  M. Coletta,et al.  Development of Potent Inhibitors of the Mycobacterium tuberculosis Virulence Factor Zmp1 and Evaluation of Their Effect on Mycobacterial Survival inside Macrophages , 2018, ChemMedChem.

[7]  M. Botta,et al.  Design, synthesis, SAR and biological investigation of 3-(carboxymethyl)rhodanine and aminothiazole inhibitors of Mycobacterium tuberculosis Zmp1. , 2018, Bioorganic & medicinal chemistry letters.

[8]  L. Verschaeve,et al.  Design, synthesis and antitubercular potency of 4-hydroxyquinolin-2(1H)-ones. , 2017, European journal of medicinal chemistry.

[9]  J. Sangshetti,et al.  Quinolidene-rhodanine conjugates: Facile synthesis and biological evaluation. , 2017, European journal of medicinal chemistry.

[10]  T. Parish,et al.  Current challenges in drug discovery for tuberculosis , 2017, Expert opinion on drug discovery.

[11]  J. Sangshetti,et al.  Novel tetrazoloquinoline-rhodanine conjugates: Highly efficient synthesis and biological evaluation. , 2016, Bioorganic & medicinal chemistry letters.

[12]  Martin Pouliot,et al.  Pan Assay Interference Compounds (PAINS) and Other Promiscuous Compounds in Antifungal Research. , 2016, Journal of medicinal chemistry.

[13]  M. Botta,et al.  Discovery of the first potent and selective Mycobacterium tuberculosis Zmp1 inhibitor. , 2014, Bioorganic & medicinal chemistry letters.

[14]  L. Verschaeve,et al.  Anti-mycobacterial activity of 1,3-diaryltriazenes. , 2014, European journal of medicinal chemistry.

[15]  L. Verschaeve,et al.  1,2,3,4,8,9,10,11-octahydrobenzo[j]phenanthridine-7,12-diones as new leads against Mycobacterium tuberculosis. , 2014, Journal of medicinal chemistry.

[16]  M. Rizzi,et al.  Zinc‐Dependent Metalloprotease‐1 (Zmp1) , 2013 .

[17]  M. Coletta,et al.  Functional characterization of the Mycobacterium tuberculosis zinc metallopeptidase Zmp1 and identification of potential substrates , 2012, Biological chemistry.

[18]  L. Verschaeve,et al.  1,4-diarylpiperazines and analogs as anti-tubercular agents: synthesis and biological evaluation. , 2012, European journal of medicinal chemistry.

[19]  M. Coletta,et al.  Crystal Structure of Mycobacterium tuberculosis Zinc-dependent Metalloprotease-1 (Zmp1), a Metalloprotease Involved in Pathogenicity* , 2011, The Journal of Biological Chemistry.

[20]  David S. Goodsell,et al.  AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility , 2009, J. Comput. Chem..

[21]  Arthur J. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[22]  F. Martinon,et al.  Linking inflammasome activation and phagosome maturation. , 2008, Cell host & microbe.

[23]  S. Ehlers,et al.  Mycobacterium tuberculosis prevents inflammasome activation. , 2008, Cell host & microbe.