Central schemes for the modified Buckley-Leverett equation

Abstract In this paper, we extend the second and third order classical central schemes for the hyperbolic conservation laws to solve the modified Buckley–Leverett (MBL) equation which is of pseudo-parabolic type. The MBL equation describes two-phase flow in porous media, and it differs from the classical Buckley–Leverett (BL) equation by including a balanced diffusive–dispersive combination. The classical BL equation gives a monotone water saturation profile for any Riemann problem; on the contrast, when the dispersive parameter is large enough, the MBL equation delivers non-monotone water saturation profiles for certain Riemann problems as suggested by the experimental observations. Numerical results in this paper confirm the existence of non-monotone water saturation profiles consisting of constant states separated by shocks.

[1]  Iuliu Sorin Pop,et al.  A New Class of Entropy Solutions of the Buckley-Leverett Equation , 2007, SIAM J. Math. Anal..

[2]  E. Tadmor,et al.  New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .

[3]  A. Kurganov,et al.  On the Reduction of Numerical Dissipation in Central-Upwind Schemes , 2006 .

[4]  Eitan Tadmor,et al.  Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws , 1998, SIAM J. Sci. Comput..

[5]  William G. Gray,et al.  Thermodynamic basis of capillary pressure in porous media , 1993 .

[6]  Yan Xu,et al.  A Local Discontinuous Galerkin Method for the Camassa-Holm Equation , 2008, SIAM J. Numer. Anal..

[7]  David A. DiCarlo,et al.  Experimental measurements of saturation overshoot on infiltration , 2004 .

[8]  S. E. Buckley,et al.  Mechanism of Fluid Displacement in Sands , 1942 .

[9]  W. Rankine On the Thermodynamic Theory of Waves of Finite Longitudinal Disturbance. [Abstract] , 1869 .

[10]  Yan Xu,et al.  Local Discontinuous Galerkin Method for the Hunter--Saxton Equation and Its Zero-Viscosity and Zero-Dispersion Limits , 2008, SIAM J. Sci. Comput..

[11]  R. LeVeque Numerical methods for conservation laws , 1990 .

[12]  Bing-Yu Zhang,et al.  Comparison of quarter-plane and two-point boundary value problems: the BBM-equation , 2005 .

[13]  V. Duijn,et al.  Effective Buckley-Leverett equations by homogenization , 2001 .

[14]  Doron Levy,et al.  A Third-Order Semidiscrete Central Scheme for Conservation Laws and Convection-Diffusion Equations , 2000, SIAM J. Sci. Comput..

[15]  Chi-Wang Shu,et al.  Discontinuous Galerkin Methods: Theory, Computation and Applications , 2011 .

[16]  Centro internazionale matematico estivo. Session,et al.  Advanced Numerical Approximation of Nonlinear Hyperbolic Equations , 1998 .

[17]  Josephus Hulshof,et al.  Infiltration in porous media with dynamic capillary pressure: travelling waves , 2000, European Journal of Applied Mathematics.

[18]  Duijn van Cj,et al.  Effective Equations for Two-Phase Flow with Trapping on the Micro Scale , 2002, SIAM J. Appl. Math..

[19]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[20]  William G. Gray,et al.  Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries , 1990 .

[21]  E. Tadmor,et al.  Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .

[22]  Y. Wang,et al.  Bounded Domain Problem for the Modified Buckley–Leverett Equation , 2011, 1109.3481.

[23]  O. Oleinik Discontinuous solutions of non-linear differential equations , 1963 .

[24]  Gabriella Puppo,et al.  Compact Central WENO Schemes for Multidimensional Conservation Laws , 1999, SIAM J. Sci. Comput..