On generic chaining and the smallest singular value of random matrices with heavy tails

[1]  Minorations des fonctions aléatoires gaussiennes , 1974 .

[2]  C. Borell The Brunn-Minkowski inequality in Gauss space , 1975 .

[3]  E. Giné,et al.  Some Limit Theorems for Empirical Processes , 1984 .

[4]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[5]  M. Talagrand Regularity of gaussian processes , 1987 .

[6]  K. Ball Logarithmically concave functions and sections of convex sets in $R^{n}$ , 1988 .

[7]  G. Pisier The volume of convex bodies and Banach space geometry , 1989 .

[8]  M. Talagrand,et al.  Probability in Banach Spaces: Isoperimetry and Processes , 1991 .

[9]  M. Talagrand,et al.  Probability in Banach spaces , 1991 .

[10]  S. Kwapień,et al.  Random Series and Stochastic Integrals: Single and Multiple , 1992 .

[11]  Z. Bai,et al.  Limit of the smallest eigenvalue of a large dimensional sample covariance matrix , 1993 .

[12]  M. Talagrand THE SUPREMUM OF SOME CANONICAL PROCESSES , 1994 .

[13]  S. Kwapień,et al.  Tail and moment estimates for sums of independent random variables with logarithmically concave tails , 1995 .

[14]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[15]  M. Rudelson Random Vectors in the Isotropic Position , 1996, math/9608208.

[16]  R. Latala Estimation of moments of sums of independent real random variables , 1997 .

[17]  P. Gänssler Weak Convergence and Empirical Processes - A. W. van der Vaart; J. A. Wellner. , 1997 .

[18]  R. Dudley,et al.  Uniform Central Limit Theorems: Notation Index , 2014 .

[19]  R. Dudley Uniform Central Limit Theorems: Preface , 1999 .

[20]  Fedor Nazarov,et al.  On Convex Bodies and Log-Concave Probability Measures with Unconditional Basis , 2003 .

[21]  M. Talagrand The Generic Chaining , 2005 .

[22]  A. Giannopoulos,et al.  Random Points in Isotropic Unconditional Convex Bodies , 2005 .

[23]  S. Mendelson,et al.  Reconstruction and subgaussian operators , 2005, math/0506239.

[24]  G. Paouris Concentration of mass on convex bodies , 2006 .

[25]  Rafal Latala On Weak Tail Domination of Random Vectors , 2007 .

[26]  Guillaume Aubrun Sampling convex bodies: a random matrix approach , 2007 .

[27]  S. Mendelson,et al.  Reconstruction and Subgaussian Operators in Asymptotic Geometric Analysis , 2007 .

[28]  R. Adamczak,et al.  Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles , 2009, 0903.2323.

[29]  M. Rudelson,et al.  Non-asymptotic theory of random matrices: extreme singular values , 2010, 1003.2990.

[30]  S. Mendelson Empirical Processes with a Bounded Ψ1 Diameter , 2010 .

[31]  R. Adamczak,et al.  Sharp bounds on the rate of convergence of the empirical covariance matrix , 2010, 1012.0294.

[32]  R. Vershynin How Close is the Sample Covariance Matrix to the Actual Covariance Matrix? , 2010, 1004.3484.

[33]  Rafal Latala Order statistics and concentration of lr norms for log-concave vectors , 2011 .

[34]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[35]  G. Paouris Small ball probability estimates for log-concave measures , 2012 .

[36]  R. Adamczak,et al.  Chevet type inequality and norms of submatrices , 2011, 1107.4066.

[37]  R. Vershynin,et al.  Covariance estimation for distributions with 2+ε moments , 2011, 1106.2775.