On generic chaining and the smallest singular value of random matrices with heavy tails
暂无分享,去创建一个
[1] Minorations des fonctions aléatoires gaussiennes , 1974 .
[2] C. Borell. The Brunn-Minkowski inequality in Gauss space , 1975 .
[3] E. Giné,et al. Some Limit Theorems for Empirical Processes , 1984 .
[4] V. Milman,et al. Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .
[5] M. Talagrand. Regularity of gaussian processes , 1987 .
[6] K. Ball. Logarithmically concave functions and sections of convex sets in $R^{n}$ , 1988 .
[7] G. Pisier. The volume of convex bodies and Banach space geometry , 1989 .
[8] M. Talagrand,et al. Probability in Banach Spaces: Isoperimetry and Processes , 1991 .
[9] M. Talagrand,et al. Probability in Banach spaces , 1991 .
[10] S. Kwapień,et al. Random Series and Stochastic Integrals: Single and Multiple , 1992 .
[11] Z. Bai,et al. Limit of the smallest eigenvalue of a large dimensional sample covariance matrix , 1993 .
[12] M. Talagrand. THE SUPREMUM OF SOME CANONICAL PROCESSES , 1994 .
[13] S. Kwapień,et al. Tail and moment estimates for sums of independent random variables with logarithmically concave tails , 1995 .
[14] Jon A. Wellner,et al. Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .
[15] M. Rudelson. Random Vectors in the Isotropic Position , 1996, math/9608208.
[16] R. Latala. Estimation of moments of sums of independent real random variables , 1997 .
[17] P. Gänssler. Weak Convergence and Empirical Processes - A. W. van der Vaart; J. A. Wellner. , 1997 .
[18] R. Dudley,et al. Uniform Central Limit Theorems: Notation Index , 2014 .
[19] R. Dudley. Uniform Central Limit Theorems: Preface , 1999 .
[20] Fedor Nazarov,et al. On Convex Bodies and Log-Concave Probability Measures with Unconditional Basis , 2003 .
[21] M. Talagrand. The Generic Chaining , 2005 .
[22] A. Giannopoulos,et al. Random Points in Isotropic Unconditional Convex Bodies , 2005 .
[23] S. Mendelson,et al. Reconstruction and subgaussian operators , 2005, math/0506239.
[24] G. Paouris. Concentration of mass on convex bodies , 2006 .
[25] Rafal Latala. On Weak Tail Domination of Random Vectors , 2007 .
[26] Guillaume Aubrun. Sampling convex bodies: a random matrix approach , 2007 .
[27] S. Mendelson,et al. Reconstruction and Subgaussian Operators in Asymptotic Geometric Analysis , 2007 .
[28] R. Adamczak,et al. Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles , 2009, 0903.2323.
[29] M. Rudelson,et al. Non-asymptotic theory of random matrices: extreme singular values , 2010, 1003.2990.
[30] S. Mendelson. Empirical Processes with a Bounded Ψ1 Diameter , 2010 .
[31] R. Adamczak,et al. Sharp bounds on the rate of convergence of the empirical covariance matrix , 2010, 1012.0294.
[32] R. Vershynin. How Close is the Sample Covariance Matrix to the Actual Covariance Matrix? , 2010, 1004.3484.
[33] Rafal Latala. Order statistics and concentration of lr norms for log-concave vectors , 2011 .
[34] Roman Vershynin,et al. Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.
[35] G. Paouris. Small ball probability estimates for log-concave measures , 2012 .
[36] R. Adamczak,et al. Chevet type inequality and norms of submatrices , 2011, 1107.4066.
[37] R. Vershynin,et al. Covariance estimation for distributions with 2+ε moments , 2011, 1106.2775.