The Osteogenic Niche Is a Calcium Reservoir of Bone Micrometastases and Confers Unexpected Therapeutic Vulnerability.

[1]  Yibin Kang,et al.  Therapeutic Antibody Targeting Tumor- and Osteoblastic Niche-Derived Jagged1 Sensitizes Bone Metastasis to Chemotherapy. , 2017, Cancer cell.

[2]  G. Colditz,et al.  Bone-Induced Expression of Integrin β3 Enables Targeted Nanotherapy of Breast Cancer Metastases. , 2017, Cancer research.

[3]  Stephen T. C. Wong,et al.  Bone-in-culture array as a platform to model early-stage bone metastases and discover anti-metastasis therapies , 2017, Nature Communications.

[4]  A. D. Dei Tos,et al.  The co-existence of transcriptional activator and transcriptional repressor MEF2 complexes influences tumor aggressiveness , 2017, PLoS genetics.

[5]  Trond Aasen,et al.  Gap junctions and cancer: communicating for 50 years , 2016, Nature Reviews Cancer.

[6]  L. Nathan Perkins,et al.  Unstable neurons underlie a stable learned behavior , 2016, Nature Neuroscience.

[7]  X. Zhang,et al.  Intra-iliac Artery Injection for Efficient and Selective Modeling of Microscopic Bone Metastasis. , 2016, Journal of visualized experiments : JoVE.

[8]  C. McCall,et al.  Dormant breast cancer micrometastases reside in specific bone marrow niches that regulate their transit to and from bone , 2016, Science Translational Medicine.

[9]  J. Massagué,et al.  Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer , 2016, Nature.

[10]  S. Baylin,et al.  Targeting Calcium Signaling Induces Epigenetic Reactivation of Tumor Suppressor Genes in Cancer. , 2016, Cancer Research.

[11]  J. Shendure,et al.  Substantial inter-individual and limited intra-individual genomic diversity among tumors from men with metastatic prostate cancer , 2016, Nature Medicine.

[12]  J. Massagué,et al.  Metastatic colonization by circulating tumour cells , 2016, Nature.

[13]  S. Stewart,et al.  Stromal-Initiated Changes in the Bone Promote Metastatic Niche Development. , 2016, Cell reports.

[14]  O. Garaschuk,et al.  Brain tumour cells interconnect to a functional and resistant network , 2015, Nature.

[15]  Wenjun Xie,et al.  Excess TGF-β mediates muscle weakness associated with bone metastases in mice , 2015, Nature Medicine.

[16]  J. Chirgwin,et al.  The TGF-β Signaling Regulator PMEPA1 Suppresses Prostate Cancer Metastases to Bone. , 2015, Cancer cell.

[17]  Mark E. Davis,et al.  Store-Operated Ca2+ Channels in Mesangial Cells Inhibit Matrix Protein Expression. , 2015, Journal of the American Society of Nephrology : JASN.

[18]  Stephen T. C. Wong,et al.  The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells. , 2015, Cancer cell.

[19]  X. Chen,et al.  Molecular and Cellular Pathobiology Nuclear Factor of Activated T-cell Activity Is Associated with Metastatic Capacity in Colon Cancer , 2014 .

[20]  P. Jin,et al.  Cell cycle-linked MeCP2 phosphorylation modulates adult neurogenesis involving the Notch signaling pathway , 2014, Nature Communications.

[21]  M. Benahmed,et al.  Remodeling of channel-forming ORAI proteins determines an oncogenic switch in prostate cancer. , 2014, Cancer cell.

[22]  R. Schiff,et al.  Metastasis Dormancy in Estrogen Receptor–Positive Breast Cancer , 2013, Clinical Cancer Research.

[23]  Klaus Pantel,et al.  Tumor metastasis: moving new biological insights into the clinic , 2013, Nature Medicine.

[24]  J. Foekens,et al.  Selection of Bone Metastasis Seeds by Mesenchymal Signals in the Primary Tumor Stroma , 2013, Cell.

[25]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[26]  Mina J. Bissell,et al.  The perivascular niche regulates breast tumor dormancy , 2013, Nature Cell Biology.

[27]  Chawnshang Chang,et al.  Suppression of androgen receptor enhances the self-renewal of mesenchymal stem cells through elevated expression of EGFR. , 2013, Biochimica et biophysica acta.

[28]  Justin Guinney,et al.  GSVA: gene set variation analysis for microarray and RNA-Seq data , 2013, BMC Bioinformatics.

[29]  Brian Ell,et al.  SnapShot: Bone Metastasis , 2012, Cell.

[30]  H. Bading,et al.  Nuclear Calcium Signaling Controls Methyl-CpG-binding Protein 2 (MeCP2) Phosphorylation on Serine 421 following Synaptic Activity* , 2012, The Journal of Biological Chemistry.

[31]  T. Brümmendorf,et al.  Targeting Aurora Kinases with Danusertib (PHA-739358) Inhibits Growth of Liver Metastases from Gastroenteropancreatic Neuroendocrine Tumors in an Orthotopic Xenograft Model , 2012, Clinical Cancer Research.

[32]  P. Wysocki,et al.  Progress in the treatment of bone metastases in cancer patients , 2012, Expert opinion on investigational drugs.

[33]  M. Piccart,et al.  Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. , 2012, The New England journal of medicine.

[34]  Harrison W. Gabel,et al.  Genome-Wide Activity-Dependent MeCP2 Phosphorylation Regulates Nervous System Development and Function , 2011, Neuron.

[35]  Jennifer Keiser,et al.  Interactions of mefloquine with praziquantel in the Schistosoma mansoni mouse model and in vitro. , 2011, The Journal of antimicrobial chemotherapy.

[36]  N. Prevarskaya,et al.  Calcium in tumour metastasis: new roles for known actors , 2011, Nature Reviews Cancer.

[37]  Sonia Sharma,et al.  Dephosphorylation of the nuclear factor of activated T cells (NFAT) transcription factor is regulated by an RNA-protein scaffold complex , 2011, Proceedings of the National Academy of Sciences.

[38]  M. Ishikawa,et al.  Pannexin 3 functions as an ER Ca2+ channel, hemichannel, and gap junction to promote osteoblast differentiation , 2011, The Journal of cell biology.

[39]  T. Guise,et al.  Cancer to bone: a fatal attraction , 2011, Nature Reviews Cancer.

[40]  I. Plante,et al.  Cx43 suppresses mammary tumor metastasis to the lung in a Cx43 mutant mouse model of human disease , 2011, Oncogene.

[41]  Yibin Kang,et al.  Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. , 2011, Cancer cell.

[42]  M. Falk,et al.  Assembly of Connexin43 into Gap Junctions Is Regulated Differentially by E-Cadherin and N-Cadherin in Rat Liver Epithelial Cells , 2010, Molecular biology of the cell.

[43]  Sarah J. Roberts-Thomson,et al.  Store-Independent Activation of Orai1 by SPCA2 in Mammary Tumors , 2010, Cell.

[44]  Paul De Koninck,et al.  CaMKII control of spine size and synaptic strength: Role of phosphorylation states and nonenzymatic action , 2010, Proceedings of the National Academy of Sciences.

[45]  Karen Gelmon,et al.  Metastatic behavior of breast cancer subtypes. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[46]  Larry Norton,et al.  Latent bone metastasis in breast cancer tied to Src-dependent survival signals. , 2009, Cancer cell.

[47]  John W M Martens,et al.  Subtypes of breast cancer show preferential site of relapse. , 2008, Cancer research.

[48]  P. Adamson,et al.  Phase 1 trial and pharmacokinetic study of arsenic trioxide in children and adolescents with refractory or relapsed acute leukemia, including acute promyelocytic leukemia or lymphoma. , 2008, Blood.

[49]  Sarah J. Roberts-Thomson,et al.  Calcium and cancer: targeting Ca2+ transport , 2007, Nature Reviews Cancer.

[50]  Y. Jan,et al.  Microtubule Plus-End-Tracking Proteins Target Gap Junctions Directly from the Cell Interior to Adherens Junctions , 2007, Cell.

[51]  Brigitte Mauroy,et al.  role of transient receptor potential channels in Ca2+ entry and proliferation of prostate cancer epithelial cells. , 2009 .

[52]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[53]  C. Dang,et al.  Arsenic suppresses gene expression in promyelocytic leukemia cells partly through Sp1 oxidation. , 2005, Blood.

[54]  F. Macian,et al.  NFAT proteins: key regulators of T-cell development and function , 2005, Nature Reviews Immunology.

[55]  D. Laird,et al.  Oculodentodigital Dysplasia-causing Connexin43 Mutants Are Non-functional and Exhibit Dominant Effects on Wild-type Connexin43* , 2005, Journal of Biological Chemistry.

[56]  P. Lampe,et al.  The Gap Junction Protein Connexin32 Is a Mouse Lung Tumor Suppressor , 2004, Cancer Research.

[57]  Eric C. Griffith,et al.  Derepression of BDNF Transcription Involves Calcium-Dependent Phosphorylation of MeCP2 , 2003, Science.

[58]  M. Berridge,et al.  Calcium: Calcium signalling: dynamics, homeostasis and remodelling , 2003, Nature Reviews Molecular Cell Biology.

[59]  C. Cordon-Cardo,et al.  A multigenic program mediating breast cancer metastasis to bone. , 2003, Cancer cell.

[60]  Juan I. Young,et al.  Mice with Truncated MeCP2 Recapitulate Many Rett Syndrome Features and Display Hyperacetylation of Histone H3 , 2002, Neuron.

[61]  M. Lanotte,et al.  Synergic effects of arsenic trioxide and cAMP during acute promyelocytic leukemia cell maturation subtends a novel signaling cross-talk. , 2002, Blood.

[62]  T. Yoneda,et al.  Factors regulating the growth of metastatic cancer in bone. , 1999, Endocrine-related cancer.

[63]  K. Willecke,et al.  High incidence of spontaneous and chemically induced liver tumors in mice deficient for connexin32 , 1997, Current Biology.

[64]  Wei Tang,et al.  Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. , 1997, Blood.

[65]  Y. Moshel,et al.  Induction of graft vs. tumor effect in a murine model of mammary adenocarcinoma , 1997, International journal of cancer.

[66]  E. Price,et al.  Role of kinases and the phosphatase calcineurin in the nuclear shuttling of transcription factor NF-AT4 , 1996, Nature.

[67]  J. Revel,et al.  Inhibition of gap junction and adherens junction assembly by connexin and A-CAM antibodies , 1992, The Journal of cell biology.

[68]  L. Plotkin,et al.  Beyond gap junctions: Connexin43 and bone cell signaling. , 2013, Bone.

[69]  Jean X. Jiang,et al.  Roles of gap junctions and hemichannels in bone cell functions and in signal transmission of mechanical stress. , 2007, Frontiers in bioscience : a journal and virtual library.

[70]  E. Olson,et al.  MEF2: a calcium-dependent regulator of cell division, differentiation and death. , 2002, Trends in biochemical sciences.