Directed Migration of Cortical Interneurons Depends on the Cell-Autonomous Action of Sip1

[1]  V. Tropepe,et al.  Zfhx1b induces a definitive neural stem cell fate in mouse embryonic stem cells. , 2012, Stem cells and development.

[2]  Elliott H. Sherr,et al.  Dual-Mode Modulation of Smad Signaling by Smad-Interacting Protein Sip1 Is Required for Myelination in the Central Nervous System , 2012, Neuron.

[3]  D. Huylebroeck,et al.  Few Smad proteins and many Smad-interacting proteins yield multiple functions and action modes in TGFβ/BMP signaling in vivo. , 2011, Cytokine & growth factor reviews.

[4]  S. Butt,et al.  Developmental mechanisms for the generation of telencephalic interneurons , 2011, Developmental neurobiology.

[5]  V. Tarabykin,et al.  FLRT2 and FLRT3 act as repulsive guidance cues for Unc5-positive neurons , 2011, Neuroscience Research.

[6]  G. Berx,et al.  The EMT regulator Zeb2/Sip1 is essential for murine embryonic hematopoietic stem/progenitor cell differentiation and mobilization. , 2011, Blood.

[7]  J. Cloutier,et al.  Robo1 Regulates Semaphorin Signaling to Guide the Migration of Cortical Interneurons through the Ventral Forebrain , 2011, The Journal of Neuroscience.

[8]  O. Marín,et al.  Cxcr7 Controls Neuronal Migration by Regulating Chemokine Responsiveness , 2011, Neuron.

[9]  J. Rubenstein,et al.  CXCR4 and CXCR7 Have Distinct Functions in Regulating Interneuron Migration , 2011, Neuron.

[10]  N. Kessaris,et al.  The Germinal Zones of the Basal Ganglia But Not the Septum Generate GABAergic Interneurons for the Cortex , 2010, The Journal of Neuroscience.

[11]  J. Bolz,et al.  Ephrins guide migrating cortical interneurons in the basal telencephalon , 2010, Cell adhesion & migration.

[12]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[13]  G. Miyoshi,et al.  Genetic Fate Mapping Reveals That the Caudal Ganglionic Eminence Produces a Large and Diverse Population of Superficial Cortical Interneurons , 2010, The Journal of Neuroscience.

[14]  Y. Yanagawa,et al.  Differential gene expression in migrating cortical interneurons during mouse forebrain development , 2009, The Journal of comparative neurology.

[15]  Klaus-Armin Nave,et al.  Sip1 regulates sequential fate decisions by feedback signaling from postmitotic neurons to progenitors , 2009, Nature Neuroscience.

[16]  T. Kennedy,et al.  The netrin protein family , 2009, Genome Biology.

[17]  O. Marín,et al.  The Embryonic Preoptic Area Is a Novel Source of Cortical GABAergic Interneurons , 2009, The Journal of Neuroscience.

[18]  I. Cobos,et al.  Dlx1&2 and Mash1 transcription factors control MGE and CGE patterning and differentiation through parallel and overlapping pathways. , 2009, Cerebral cortex.

[19]  Ken W. Y. Cho,et al.  Unc5B Interacts with FLRT3 and Rnd1 to Modulate Cell Adhesion in Xenopus Embryos , 2009, PloS one.

[20]  E. Anton,et al.  Netrin-1–α3β1 integrin interactions regulate the migration of interneurons through the cortical marginal zone , 2009, Proceedings of the National Academy of Sciences.

[21]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[22]  A. Chédotal,et al.  Transcriptional regulation of tangential neuronal migration in the developing forebrain , 2009, Current Opinion in Neurobiology.

[23]  K. Kullander,et al.  Temporal regulation of ephrin/Eph signalling is required for the spatial patterning of the mammalian striatum , 2008, Development.

[24]  S. Anderson,et al.  Postmitotic Nkx2-1 Controls the Migration of Telencephalic Interneurons by Direct Repression of Guidance Receptors , 2008, Neuron.

[25]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[26]  J. Bolz,et al.  Ephrin‐A5 acts as a repulsive cue for migrating cortical interneurons , 2008, The European journal of neuroscience.

[27]  J. Vandekerckhove,et al.  Atypical Mowat-Wilson patient confirms the importance of the novel association between ZFHX1B/SIP1 and NuRD corepressor complex. , 2008, Human molecular genetics.

[28]  Jeffrey A Golden,et al.  FACS‐array gene expression analysis during early development of mouse telencephalic interneurons , 2008, Developmental neurobiology.

[29]  O. Marín,et al.  Chemokine Signaling Controls Intracortical Migration and Final Distribution of GABAergic Interneurons , 2008, The Journal of Neuroscience.

[30]  H. Adesnik,et al.  Regional Distribution of Cortical Interneurons and Development of Inhibitory Tone Are Regulated by Cxcl12/Cxcr4 Signaling , 2008, The Journal of Neuroscience.

[31]  F. Murakami,et al.  The role of Slit-Robo signaling in the generation, migration and morphological differentiation of cortical interneurons. , 2008, Developmental biology.

[32]  L. Garavelli,et al.  Mowat-Wilson syndrome , 2007, Orphanet journal of rare diseases.

[33]  Matthew Grist,et al.  Spatial Genetic Patterning of the Embryonic Neuroepithelium Generates GABAergic Interneuron Diversity in the Adult Cortex , 2007, The Journal of Neuroscience.

[34]  Christian Fischer,et al.  Activation of the UNC5B receptor by Netrin-1 inhibits sprouting angiogenesis. , 2007, Genes & development.

[35]  V. Tarabykin,et al.  Smad-interacting protein-1 (Zfhx1b) acts upstream of Wnt signaling in the mouse hippocampus and controls its formation , 2007, Proceedings of the National Academy of Sciences.

[36]  G. Miyoshi,et al.  Physiologically Distinct Temporal Cohorts of Cortical Interneurons Arise from Telencephalic Olig2-Expressing Precursors , 2007, The Journal of Neuroscience.

[37]  Héctor Peinado,et al.  Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? , 2007, Nature Reviews Cancer.

[38]  E. Bellefroid,et al.  XSip1 neuralizing activity involves the co-repressor CtBP and occurs through BMP dependent and independent mechanisms. , 2007, Developmental biology.

[39]  Susumu Mori,et al.  Robo1 regulates the development of major axon tracts and interneuron migration in the forebrain , 2006, Development.

[40]  Palma Iannarelli,et al.  Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage , 2006, Nature Neuroscience.

[41]  Tobias M. Fischer,et al.  Short- and Long-Range Attraction of Cortical GABAergic Interneurons by Neuregulin-1 , 2004, Neuron.

[42]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[43]  Pat Levitt,et al.  Regulation of neocortical interneuron development and the implications for neurodevelopmental disorders , 2004, Trends in Neurosciences.

[44]  L. Nelles,et al.  Interaction between Smad-interacting Protein-1 and the Corepressor C-terminal Binding Protein Is Dispensable for Transcriptional Repression of E-cadherin* , 2003, Journal of Biological Chemistry.

[45]  S. Schulz,et al.  CXCR4 Regulates Interneuron Migration in the Developing Neocortex , 2003, The Journal of Neuroscience.

[46]  O. Marín,et al.  Directional guidance of interneuron migration to the cerebral cortex relies on subcortical Slit1/2-independent repulsion and cortical attraction , 2003, Development.

[47]  L. Nelles,et al.  Mice lacking ZFHX1B, the gene that codes for Smad-interacting protein-1, reveal a role for multiple neural crest cell defects in the etiology of Hirschsprung disease-mental retardation syndrome. , 2003, American journal of human genetics.

[48]  Caleb F. Davis,et al.  Genetic Disruption of Cortical Interneuron Development Causes Region- and GABA Cell Type-Specific Deficits, Epilepsy, and Behavioral Dysfunction , 2003, The Journal of Neuroscience.

[49]  Kenneth Campbell,et al.  Identification of Two Distinct Progenitor Populations in the Lateral Ganglionic Eminence: Implications for Striatal and Olfactory Bulb Neurogenesis , 2003, The Journal of Neuroscience.

[50]  Anirvan Ghosh,et al.  The Slice Overlay Assay: A Versatile Tool to Study the Influence of Extracellular Signals on Neuronal Development , 2002, Science's STKE.

[51]  Andrew P McMahon,et al.  A mitogen gradient of dorsal midline Wnts organizes growth in the CNS. , 2002, Development.

[52]  A. Rauch,et al.  "Mowat-Wilson" syndrome with and without Hirschsprung disease is a distinct, recognizable multiple congenital anomalies-mental retardation syndrome caused by mutations in the zinc finger homeo box 1B gene. , 2002, American journal of medical genetics.

[53]  L. Nelles,et al.  Generation of the floxed allele of the SIP1 (Smad‐interacting protein 1) gene for Cre‐mediated conditional knockout in the mouse , 2002, Genesis.

[54]  J. Rubenstein,et al.  Sorting of Striatal and Cortical Interneurons Regulated by Semaphorin-Neuropilin Interactions , 2001, Science.

[55]  G. Berx,et al.  The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. , 2001, Molecular cell.

[56]  O. Kretz,et al.  Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety , 1999, Nature Genetics.

[57]  S. Anderson,et al.  Differential origins of neocortical projection and local circuit neurons: role of Dlx genes in neocortical interneuronogenesis. , 1999, Cerebral cortex.

[58]  L. Nelles,et al.  SIP1, a Novel Zinc Finger/Homeodomain Repressor, Interacts with Smad Proteins and Binds to 5′-CACCT Sequences in Candidate Target Genes* , 1999, The Journal of Biological Chemistry.

[59]  J. García-Verdugo,et al.  Young neurons from medial ganglionic eminence disperse in adult and embryonic brain , 1999, Nature Neuroscience.

[60]  Cerebral Cortex doi:10.1093/cercor/bhp038 Characterization of Nkx6-2-Derived , 2009 .

[61]  S. Anderson,et al.  Fate mapping Nkx2.1‐lineage cells in the mouse telencephalon , 2008, The Journal of comparative neurology.

[62]  G. Fishell,et al.  Cerebral Cortex doi:10.1093/cercor/bhm258 Gene Expression in Cortical Interneuron Precursors is Prescient of their Mature Function , 2008 .