Repetitive patterns in rapid optical variations in the nearby black-hole binary V404 Cygni

How black holes accrete surrounding matter is a fundamental yet unsolved question in astrophysics. It is generally believed that matter is absorbed into black holes via accretion disks, the state of which depends primarily on the mass-accretion rate. When this rate approaches the critical rate (the Eddington limit), thermal instability is supposed to occur in the inner disk, causing repetitive patterns of large-amplitude X-ray variability (oscillations) on timescales of minutes to hours. In fact, such oscillations have been observed only in sources with a high mass-accretion rate, such as GRS 1915+105 (refs 2, 3). These large-amplitude, relatively slow timescale, phenomena are thought to have physical origins distinct from those of X-ray or optical variations with small amplitudes and fast timescales (less than about 10 seconds) often observed in other black-hole binaries—for example, XTE J1118+480 (ref. 4) and GX 339−4 (ref. 5). Here we report an extensive multi-colour optical photometric data set of V404 Cygni, an X-ray transient source containing a black hole of nine solar masses (and a companion star) at a distance of 2.4 kiloparsecs (ref. 8). Our data show that optical oscillations on timescales of 100 seconds to 2.5 hours can occur at mass-accretion rates more than ten times lower than previously thought. This suggests that the accretion rate is not the critical parameter for inducing inner-disk instabilities. Instead, we propose that a long orbital period is a key condition for these large-amplitude oscillations, because the outer part of the large disk in binaries with long orbital periods will have surface densities too low to maintain sustained mass accretion to the inner part of the disk. The lack of sustained accretion—not the actual rate—would then be the critical factor causing large-amplitude oscillations in long-period systems.

Yuki Sugiura | Federica B. Bianco | Megan E. Schwamb | Teruaki Enoto | Nick James | Dae-Won Kim | Megumi Shidatsu | Ian Miller | Chih-Yi Wen | Roger D. Pickard | Yong-Ik Byun | Kem H. Cook | Shiang-Yu Wang | Yoshihiro Ueda | Matthew J. Lehner | Zhi-Wei Zhang | Charles Alcock | Taichi Kato | Makoto Uemura | Atsushi Miyashita | Hiromitsu Takahashi | Pavol A. Dubovsky | Alexei S. Pozanenko | Colin Littlefield | F. Bianco | K. Cook | T. Axelrod | Dae-Won Kim | A. Volnova | M. Richmond | S. Kiyota | M. Schwamb | R. Inasaridze | I. Molotov | M. Lehner | C. Alcock | K. Antonyuk | M. Uemura | S. Marshall | Ying-Tung Chen | Shiang‐Yu Wang | T. Enoto | M. Shidatsu | Y. Ueda | T. Hori | Typhoon Lee | E. Miguel | A. Pozanenko | E. Mazaeva | Y. Byun | L. Cook | E. Pavlenko | Taichi Kato | D. Nogami | R. Pickard | I. Miller | W. Stein | P. Dubovský | K. Kasai | O. Antonyuk | A. Baklanov | A. Sosnovskij | C. Littlefield | J. Ruiz | W. Goff | A. Miyashita | M. Andreev | T. Tordai | Yutaka Maeda | R. Ishioka | S. King | A. Imada | Wen-Ping Chen | Daisaku Nogami | Wen-Ping Chen | Nick James | Takafumi Hori | Kirill A. Antonyuk | S. Nakahira | Enrique de Miguel | Tim Axelrod | Elena P. Pavlenko | Typhoon Lee | Sun-Kun King | Ying-Tung Chen | Seiichiro Kiyota | Ryoko Ishioka | Satoshi Nakahira | Keisuke Isogai | Mariko Kimura | Naoto Kojiguchi | K. Isogai | M. Kimura | N. Kojiguchi | Y. Sugiura | Eiji Yamada | J. Babina | Alina A. Volnova | Elena D. Mazaeva | Michael Richmond | Jen-Hung Wang | Stuart L. Marshall | Oksana I. Antonyuk | Nikolai V. Pit | Aleksei A. Sosnovskij | Julia V. Babina | Aleksei V. Baklanov | Sergei E. Schmalz | Inna V. Reva | Sergei P. Belan | Raguli Ya. Inasaridze | Namkhai Tungalag | Igor E. Molotov | Kiyoshi Kasai | William L. Stein | William Goff | Maksim V. Andreev | Nao Takeda | Eiji Yamada | Katsura Matsumoto | Tamás Tordai | Yutaka Maeda | Javier Ruiz | Lewis M. Cook | Akira Imada | I. Reva | N. Tungalag | S. Schmalz | K. Matsumoto | H. Takahashi | Jen-Hung Wang | Zhi-Wei Zhang | Chih-Yi Wen | N. Pit | S. Belan | Nao Takeda | Ying-Tung Chen | Yuki Sugiura

[1]  P. G. Jonker,et al.  THE FIRST ACCURATE PARALLAX DISTANCE TO A BLACK HOLE , 2009, 0910.5253.

[2]  Agnieszka Janiuk,et al.  Interplay between heartbeat oscillations and wind outflow in microquasar IGR J17091-3624 , 2014, 1411.4434.

[3]  T. Belloni,et al.  THE FAINT “HEARTBEATS” OF IGR J17091–3624: AN EXCEPTIONAL BLACK HOLE CANDIDATE , 2011, 1112.2393.

[4]  V. Goranskij Variable stars in Sagittarius. , 1978 .

[5]  Hans Ritter,et al.  The light curves of soft X‐ray transients , 1988 .

[6]  J. Zand,et al.  Indications for a slow rotator in the Rapid Burster from its thermonuclear bursting behaviour , 2013, 1302.4286.

[7]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[8]  D. Walton,et al.  Correlated Optical and X-ray variability in V404 Cyg , 2015 .

[9]  Roger D. Blandford,et al.  Relativistic jets as compact radio sources , 1979 .

[10]  Pas,et al.  On different types of instabilities in black hole accretion discs. Implications for X-ray binaries and AGN , 2011, 1102.3257.

[11]  Gianluca,et al.  Outburst and Post-Outburst Active Phase of the Black Hole X-ray Binary V 4641 Sgr in 2002 , 2003 .

[12]  D. Steeghs,et al.  A PARALLAX DISTANCE TO THE MICROQUASAR GRS 1915+105 AND A REVISED ESTIMATE OF ITS BLACK HOLE MASS , 2014, 1409.2453.

[13]  J. Rice,et al.  TAOS: The Taiwanese–American Occultation Survey , 2003 .

[14]  D.Steeghs,et al.  THE NOT-SO-MASSIVE BLACK HOLE IN THE MICROQUASAR GRS1915+105 , 2013, 1304.1808.

[15]  A. Nandi,et al.  DETERMINATION OF THE MASS OF IGR J17091–3624 FROM “SPECTRO-TEMPORAL” VARIATIONS DURING THE ONSET PHASE OF THE 2011 OUTBURST , 2015, 1505.02529.

[16]  NEAR-INFRARED SYNCHROTRON EMISSION FROM THE COMPACT JET OF GX 339 4 , 2002, astro-ph/0205402.

[17]  M. Uemura,et al.  Outburst of a Black Hole X-ray Binary V4641 Sgr in 2004 July , 2005 .

[18]  M. Rupen,et al.  The Quiescent Spectral Energy Distribution of V404 Cyg , 2009, 0907.4376.

[19]  W. P. Chen,et al.  Early Optical Brightening in GRB 071010B , 2008 .

[20]  A. R. King,et al.  An Unstable Central Disk in the Superluminal Black Hole X-Ray Binary GRS 1915+105 , 1997, astro-ph/9702048.

[21]  J. Orosz,et al.  THE BLACK HOLE BINARY V4641 SAGITARII: ACTIVITY IN QUIESCENCE AND IMPROVED MASS DETERMINATIONS , 2014, 1401.4190.

[22]  Arne A. Henden,et al.  The American Association of Variable Star Observers (AAVSO) , 2006 .

[23]  P. D'Avanzo,et al.  A VARIABLE MID-INFRARED SYNCHROTRON BREAK ASSOCIATED WITH THE COMPACT JET IN GX 339–4 , 2011, 1109.4143.

[24]  C. Copperwheat,et al.  Cataclysmic Variables below the Period Gap: Mass Determinations of 14 Eclipsing Systems , 2011, 1103.2713.

[25]  16 Second Optical Quasi-Periodic Oscillations in GX 339?4 , 1990 .

[26]  Moscow,et al.  V4641Sgr - A super-Eddington source enshrouded by an extended envelope , 2001, astro-ph/0109269.

[27]  J. Casares,et al.  Optical studies of V404 Cyg, the X-Ray transient GS 2023 + 338 – III. The secondary star and accretion disc , 1993 .

[28]  Heinz-Bernd Eggenstein,et al.  A Demonstration of Accurate Wide-field V-band Photometry Using a Consumer-grade DSLR Camera , 2012 .

[29]  S. Howell,et al.  Stellar Wind Variations during the X-Ray High and Low States of Cygnus X-1 , 2008, 0801.4286.

[30]  Yasuo Tanaka,et al.  X-ray novae , 1996 .

[31]  Soon-Wook Kim,et al.  Disk Instability and Outburst Properties of the Intermediate Polar GK Persei , 1992 .

[32]  J. Cannizzo On the Relative Rates of Decay of the Optical and Soft X-Ray Fluxes in Dwarf Nova Outbursts , 1996 .

[33]  M. J. Lehner,et al.  THE TAOS PROJECT: RESULTS FROM SEVEN YEARS OF SURVEY DATA , 2013, 1301.6182.

[34]  University of Leicester,et al.  The 1989 May outburst of the soft X‐ray transient GS 2023+338 (V404 Cyg) , 1999 .

[35]  G. Clark,et al.  The discovery of rapidly repetitive X-ray bursts from a new source in Scorpius , 1976 .

[36]  J. Lasota The disc instability model of dwarf novae and low-mass X-ray binary transients , 2001, astro-ph/0102072.

[37]  J. Casares,et al.  A 6.5-day periodicity in the recurrent nova V404 Cygni implying the presence of a black hole , 1992, Nature.

[38]  M. Uemura,et al.  The 1999 Optical Outburst of the Fast X-Ray Nova, V4641 Sagittarii , 2002 .

[39]  S. Kiyota,et al.  Optical Observation of the 2003 Outburst of a Black Hole X-Ray Binary, V4641 Sagittarii , 2004 .

[40]  T. Belloni,et al.  A model-independent analysis of the variability of GRS 1915+105 , 2000 .

[41]  E. L. Robinson,et al.  NEAR-INFRARED SPECTROSCOPY OF LOW-MASS X-RAY BINARIES: ACCRETION DISK CONTAMINATION AND COMPACT OBJECT MASS DETERMINATION IN V404 Cyg AND Cen X-4 , 2010, 1004.5358.

[42]  I. Mirabel,et al.  Sources of Relativistic Jets in the Galaxy , 1999, astro-ph/9902062.

[43]  T. Belloni,et al.  GRS 1915+105 and the Disc-Jet Coupling in Accreting Black Hole Systems , 2004 .

[44]  U. L. Laguna,et al.  The accretion–ejection coupling in the black hole candidate X-ray binary MAXI J1836−194 , 2013, 1312.5822.

[45]  Y. Osaki DWARF-NOVA OUTBURSTS , 1996 .

[46]  S. Kiyota,et al.  Outburst and Post-Outburst Active Phase of the Black Hole X-Ray Binary V4641 Sagittarii in 2002 , 2003, astro-ph/0308154.

[47]  J. Casares,et al.  Optical studies of V404 Cyg, the X-ray transient GS 2023 + 338 – IV. The rotation speed of the companion star , 1994 .

[48]  R. Fender Powerful jets from black hole X-ray binaries in low/hard X-ray states , 2000, astro-ph/0008447.

[49]  J. Zand,et al.  Discovery of GRS 1915+105 variability patterns in the Rapid Burster , 2015, 1503.04751.

[50]  Charles D. Bailyn,et al.  A Black Hole in the Superluminal Source SAX J1819.3–2525 (V4641 Sgr) , 2000, astro-ph/0103045.

[51]  J. Cannizzo,et al.  THE KEPLER LIGHT CURVES OF V1504 CYGNI AND V344 LYRAE: A STUDY OF THE OUTBURST PROPERTIES , 2011, 1112.4506.

[52]  G. Sala,et al.  CONSTRAINTS ON THE MASS AND RADIUS OF THE ACCRETING NEUTRON STAR IN THE RAPID BURSTER , 2012, 1204.3627.

[53]  S. Kiyota,et al.  Rapid Optical Fluctuations in the Black Hole Binary V4641 Sagittarii , 2002, astro-ph/0208146.

[54]  D. Jones,et al.  Optical studies of V404 Cyg, the X-ray transient GS2023 + 338 – I. The 1989 outburst and decline , 1991 .

[55]  R. P. Fender,et al.  MERLIN observations of relativistic ejections from GRS 1915+105 , 1998, astro-ph/9812150.

[56]  Variable Star Network: World Center for Transient Object Astronomy and Variable Stars (Special Issue: Resent Results from VSNET) , 2003, astro-ph/0310209.

[57]  H.-C. Lin,et al.  The Taiwanese-American Occultation Survey: The Multi-Telescope Robotic Observatory , 2008, 0802.0303.

[58]  Yoji Osaki,et al.  Early humps in WZ Sge stars , 2001 .

[59]  R. Wijnands,et al.  The enigmatic black hole candidate and X-ray transient IGR J17091-3624 in its quiescent state as seen with XMM-Newton , 2012, 1202.0489.

[60]  Ronald A. Remillard,et al.  THE PHYSICS OF THE “HEARTBEAT” STATE OF GRS 1915+105 , 2011, 1106.0298.

[61]  M. Rupen,et al.  AN EXTREME X-RAY DISK WIND IN THE BLACK HOLE CANDIDATE IGR J17091−3624 , 2011, 1112.3648.

[62]  K. Horne,et al.  The remarkable rapid X-ray, ultraviolet, optical and infrared variability in the black hole XTE J1118+480 , 2003, astro-ph/0306626.

[63]  B. Savage,et al.  A survey of interstellar H I from L-alpha absorption measurements. II , 1978 .

[64]  S. Howell,et al.  Optical identification of the X-ray source GS 2023+338 as V404 Cygni , 1991 .

[65]  S. Markoff,et al.  Multi-band optical observations of V404 Cygni and correlated spectral changes , 2015 .