Angular momentum in human walking

SUMMARY Angular momentum is a conserved physical quantity for isolated systems where no external moments act about a body's center of mass (CM). However, in the case of legged locomotion, where the body interacts with the environment (ground reaction forces), there is no a priori reason for this relationship to hold. A key hypothesis in this paper is that angular momentum is highly regulated throughout the walking cycle about all three spatial directions [\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(|{\vec{L}}(t)|{\approx}0\) \end{document}], and therefore horizontal ground reaction forces and the center of pressure trajectory can be explained predominantly through an analysis that assumes zero net moment about the body's CM. Using a 16-segment human model and gait data for 10 study participants, we found that calculated zero-moment forces closely match experimental values (\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(R_{x}^{2}=0.91\) \end{document}; \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(R_{y}^{2}=0.90\) \end{document}). Additionally, the centroidal moment pivot (point where a line parallel to the ground reaction force, passing through the CM, intersects the ground) never leaves the ground support base, highlighting how closely the body regulates angular momentum. Principal component analysis was used to examine segmental contributions to whole-body angular momentum. We found that whole-body angular momentum is small, despite substantial segmental momenta, indicating large segment-to-segment cancellations (∼95% medio-lateral, ∼70% anterior–posterior and∼ 80% vertical). Specifically, we show that adjacent leg-segment momenta are balanced in the medio-lateral direction (left foot momentum cancels right foot momentum, etc.). Further, pelvis and abdomen momenta are balanced by leg, chest and head momenta in the anterior–posterior direction, and leg momentum is balanced by upper-body momentum in the vertical direction. Finally, we discuss the determinants of gait in the context of these segment-to-segment cancellations of angular momentum.

[1]  M. Friedman The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance , 1937 .

[2]  H Elftman,et al.  The function of the arms in walking , 1939 .

[3]  M. Friedman A Comparison of Alternative Tests of Significance for the Problem of $m$ Rankings , 1940 .

[4]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[5]  J. Saunders,et al.  The major determinants in normal and pathological gait. , 1953, The Journal of bone and joint surgery. American volume.

[6]  M. G. Bekker,et al.  Theory of land locomotion , 1956 .

[7]  O. J. Dunn Multiple Comparisons Using Rank Sums , 1964 .

[8]  Rodolfo Margaria,et al.  Biomechanics and Energetics of Muscular Exercise , 1976 .

[9]  G. Cavagna,et al.  The sources of external work in level walking and running. , 1976, The Journal of physiology.

[10]  R. McN. Alexander,et al.  MECHANICS OF BIPEDAL LOCOMOTION , 1976 .

[11]  G. Cavagna,et al.  Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. , 1977, The American journal of physiology.

[12]  J. Dapena A method to determine the angular momentum of a human body about three orthogonal axes passing through its center of gravity. , 1978, Journal of biomechanics.

[13]  C. Frohlich Do springboard divers violate angular momentum conservation , 1979 .

[14]  T. McMahon,et al.  Ballistic walking: an improved model , 1980 .

[15]  T. McMahon,et al.  Ballistic walking. , 1980, Journal of biomechanics.

[16]  Richard N. Hinrichs Upper extremity function in running , 1982 .

[17]  K. R. Williams,et al.  UPPER EXTREMITY CONTRIBUTIONS TO ANGULAR MOMENTUM IN RUNNING. , 1983 .

[18]  R. Hinrichs Upper extremity function in running II. Angular momentum considerations , 1987 .

[19]  H. K. Ramakrishnan,et al.  Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait , 1989, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[20]  J. Dapena,et al.  A three-dimensional analysis of angular momentum in the hammer throw. , 1989, Medicine and science in sports and exercise.

[21]  Tad McGeer,et al.  Passive Dynamic Walking , 1990, Int. J. Robotics Res..

[22]  M P Kadaba,et al.  Measurement of lower extremity kinematics during level walking , 1990, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[23]  J. E. Jackson A User's Guide to Principal Components , 1991 .

[24]  Richard N. Hinrichs,et al.  Case Studies of Asymmetrical Arm Action in Running , 1992 .

[25]  J. Edward Jackson,et al.  A User's Guide to Principal Components. , 1991 .

[26]  Jesús Dapena An analysis of angular momentum in the discus throw , 1994 .

[27]  A. Crowe,et al.  Characterization of human gait by means of body center of mass oscillations derived from ground reaction forces , 1995, IEEE Transactions on Biomedical Engineering.

[28]  G. Cavagna,et al.  External, internal and total work in human locomotion. , 1995, The Journal of experimental biology.

[29]  D. Macdonald Human walking, 2nd edn: Edited by Jessica Rose & James G. Gamble. Williams & Wilkins, 1994 , 1996 .

[30]  P O Riley,et al.  Biomechanical analysis of failed sit-to-stand. , 1997, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[31]  S. Gard,et al.  The effect of pelvic list on the vertical displacement of the trunk during normal walking , 1997 .

[32]  C. T. Farley,et al.  Determinants of the center of mass trajectory in human walking and running. , 1998, The Journal of experimental biology.

[33]  Arthur D. Kuo,et al.  Stabilization of Lateral Motion in Passive Dynamic Walking , 1999, Int. J. Robotics Res..

[34]  Pietro G. Morasso,et al.  Internal models in the control of posture , 1999, Neural Networks.

[35]  S. Gard,et al.  The influence of stance-phase knee flexion on the vertical displacement of the trunk during normal walking. , 1999, Archives of physical medicine and rehabilitation.

[36]  David E. King Generating vertical velocity and angular momentum during skating jumps , 1999 .

[37]  P. Morasso,et al.  Can muscle stiffness alone stabilize upright standing? , 1999, Journal of neurophysiology.

[38]  D. Krebs,et al.  Whole Body Momentum During Gait: A Preliminary Study of Non-Fallers and Frequent Fallers , 2000 .

[39]  D. Kerrigan,et al.  A refined view of the determinants of gait: significance of heel rise. , 2000, Archives of physical medicine and rehabilitation.

[40]  D. Kerrigan,et al.  A refined view of the determinants of gait. , 2001, Gait & posture.

[41]  D. Kerrigan,et al.  Quantification of pelvic rotation as a determinant of gait. , 2001, Archives of physical medicine and rehabilitation.

[42]  Hugh Herr,et al.  Conservation of Angular Momentum During Human Loco-motion , 2002 .

[43]  Arthur D Kuo,et al.  Energetics of actively powered locomotion using the simplest walking model. , 2002, Journal of biomechanical engineering.

[44]  Rodger Kram,et al.  Simultaneous positive and negative external mechanical work in human walking. , 2002, Journal of biomechanics.

[45]  J. Gu The Regulation of Angular Momentum During Human Walking , 2003 .

[46]  Marko B. Popovic,et al.  A sliding controller for bipedal balancing using integrated movement of contact and non-contact limbs , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[47]  Marko B. Popovic,et al.  Zero spin angular momentum control: definition and applicability , 2004, 4th IEEE/RAS International Conference on Humanoid Robots, 2004..

[48]  Marko B. Popovic,et al.  Angular momentum regulation during human walking: biomechanics and control , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[49]  Vinutha Kallem,et al.  Rate of change of angular momentum and balance maintenance of biped robots , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[50]  C. T. Farley,et al.  Minimizing center of mass vertical movement increases metabolic cost in walking. , 2005, Journal of applied physiology.

[51]  Marko B. Popovic,et al.  Ground Reference Points in Legged Locomotion: Definitions, Biological Trajectories and Control Implications , 2005, Int. J. Robotics Res..

[52]  Manoj Srinivasan,et al.  Computer optimization of a minimal biped model discovers walking and running , 2006, Nature.

[53]  Reinhard Blickhan,et al.  Compliant leg behaviour explains basic dynamics of walking and running , 2006, Proceedings of the Royal Society B: Biological Sciences.

[54]  Marko B. Popovic,et al.  Exploiting angular momentum to enhance bipedal center-of-mass control , 2009, 2009 IEEE International Conference on Robotics and Automation.