Stability of rootfinding for barycentric Lagrange interpolants

Computing the roots of a univariate polynomial can be reduced to computing the eigenvalues of an associated companion matrix. For the monomial basis, these computations have been shown to be numerically stable under certain conditions. However, for certain applications, polynomials are more naturally expressed in other bases, such as the Lagrange basis or orthogonal polynomial bases. For the Lagrange basis, the equivalent stability results have not been published. We show that computing the roots of a polynomial expressed in barycentric form via the eigenvalues of an associated companion matrix pair is numerically stable, and give a bound for the backward error. Numerical experiments show that the error bound is approximately an order of magnitude larger than the backward error. We also discuss the matter of scaling and balancing the companion matrix to bring it closer to a normal pair. With balancing, we are able to produce roots with small backward error.

[1]  A. Edelman,et al.  Polynomial roots from companion matrix eigenvalues , 1995 .

[2]  P. Rózsa,et al.  On eigenvectors and adjoints of modified matrices , 1981 .

[3]  Robert M. Corless,et al.  Numerical stability of barycentric Hermite root-finding , 2012, SNC '11.

[4]  Louis A. Romero,et al.  Roots of Polynomials Expressed in Terms of Orthogonal Polynomials , 2005, SIAM J. Numer. Anal..

[5]  Jack Dongarra,et al.  LAPACK Users' Guide, 3rd ed. , 1999 .

[6]  V. Arnold ON MATRICES DEPENDING ON PARAMETERS , 1971 .

[7]  C. Reinsch,et al.  Balancing a matrix for calculation of eigenvalues and eigenvectors , 1969 .

[8]  Lloyd N. Trefethen,et al.  Barycentric Lagrange Interpolation , 2004, SIAM Rev..

[9]  Piers W. Lawrence Fast Reduction of Generalized Companion Matrix Pairs for Barycentric Lagrange Interpolants , 2013, SIAM J. Matrix Anal. Appl..

[10]  I. J. Good THE COLLEAGUE MATRIX, A CHEBYSHEV ANALOGUE OF THE COMPANION MATRIX , 1961 .

[11]  Paul Van Dooren,et al.  Optimal scaling of block companion pencils , 2004 .

[12]  Jean-Paul Berrut,et al.  Rational functions for guaranteed and experimentally well-conditioned global interpolation , 1988 .

[13]  Robert M. Corless,et al.  Polyno-mial Algebra by Values , 2004 .

[14]  Ronald L. Graham,et al.  Concrete Mathematics, a Foundation for Computer Science , 1991, The Mathematical Gazette.

[15]  van der Arjan Schaft,et al.  International Symposium on Mathematical Theory of Networks and Systems , 2012 .

[16]  L. Trefethen,et al.  Pseudozeros of polynomials and pseudospectra of companion matrices , 1994 .

[17]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[18]  Daniel B. Szyld,et al.  The matrix eigenvalue problem: GR and Krylov subspace methods , 2009, Math. Comput..

[19]  W. Specht,et al.  Die Lage der Nullstellen eines Polynoms. III , 1957 .

[20]  James Hardy Wilkinson,et al.  The evaluation of the zeros of ill-conditioned polynomials. Part I , 1959, Numerische Mathematik.

[21]  J. H. Wilkinson The evaluation of the zeros of ill-conditioned polynomials. Part II , 1959, Numerische Mathematik.

[22]  Robert M. Corless,et al.  On a Generalized Companion Matrix Pencil for Matrix Polynomials Expressed in the Lagrange Basis , 2007 .

[23]  Paul Van Dooren,et al.  Balancing Regular Matrix Pencils , 2006, SIAM J. Matrix Anal. Appl..

[24]  Robert C. Ward,et al.  Balancing the Generalized Eigenvalue Problem , 1981 .

[25]  Robert M Corless,et al.  Bernstein Bases are Optimal , but , sometimes , Lagrange Bases are Better , 2004 .

[26]  R. M. Corless,et al.  Generalized Companion Matrices in the Lagrange Bases , 2004 .

[27]  M. A. Golberg,et al.  The Derivative of a Determinant , 1972 .

[28]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science , 1991 .

[29]  Nicholas J. Higham,et al.  Backward Error of Polynomial Eigenproblems Solved by Linearization , 2007, SIAM J. Matrix Anal. Appl..

[30]  L. Trefethen Approximation Theory and Approximation Practice (Other Titles in Applied Mathematics) , 2012 .