Empirical Interferometric Phase Variance Formulas for Bathymetric Applications

Current sonar and radar applications use interferometry to estimate the arrival angles of backscattered signals. This direction-finding method is based on a phase-difference measurement between two close receiving arrays. To model the associated bathymetric error, it is necessary to know the second-order moment of the interferometric phase estimator. This paper explains the connection between bathymetric variance and interferometric phase variance and the difficulty in the evaluation of the phase second-order estimation. Thus, a brief statistical overview of the interferometric phase estimator for fully developed speckle signals (called here RMPC for random modulus partially correlated signals) is introduced in this paper. The focus of this paper is the derivation of simple empirical variance that matches the exact values in both single-look and multilook cases. For the sake of constituency, the construction of these empirical approximations is based on a modified asymptotic expression of the second order for the phase estimator assuming high signal-to-noise ratio. In order to perform these derivations, it appears necessary to introduce a new kind of signal (namely, CMPC for constant modulus partially correlated signal) whose modulus is assumed constant. This family of signals, whose physical existence is also investigated, appears as an alternative way to derive RMPC empirical formulas. The link between RMPC and CMPC signals is established through the conditional expectation of the signal modulus. Finally, the existence of these two statistical behaviors is tested over real underwater data.

[1]  Christophe Sintes,et al.  Coherent Probabilistic Error Model for Interferometric Sidescan Sonars , 2010, IEEE Journal of Oceanic Engineering.

[2]  N. R. Goodman Statistical analysis based on a certain multivariate complex Gaussian distribution , 1963 .

[3]  Sinan Gezici,et al.  Ranging in a Single-Input Multiple-Output (SIMO) System , 2008, IEEE Communications Letters.

[4]  Guoliang Jin,et al.  Uncertainties of differential phase estimation associated with interferometric sonars , 1996 .

[5]  Christophe Sintes Déconvolution bathymétrique d'images sonar latéral par des méthodes interférométriques et de traitement de l'image , 2002 .

[6]  X. Lurton 3 - Précision de mesure des sonars bathymétriques en fonction du rapport signal/bruit , 2001 .

[7]  Jean-Marie Nicolas,et al.  Interferometric SAR coherence magnitude estimation using second kind statistics , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Tomás Martínez-Marín,et al.  An Optimized Algorithm for InSAR Phase Unwrapping Based on Particle Filtering, Matrix Pencil, and Region-Growing Techniques , 2009, IEEE Geoscience and Remote Sensing Letters.

[9]  C. L. Martínez,et al.  Multidimensional Speckle Noise, Modelling and Filtering Related to Sar Data , 2022 .

[10]  Sailes K. Sengijpta Fundamentals of Statistical Signal Processing: Estimation Theory , 1995 .

[11]  S. Quegan,et al.  A statistical description of polarimetric and interferometric synthetic aperture radar data , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[12]  Allen R. Miller,et al.  Statistics of phase difference and product magnitude of multi-look processed Gaussian signals , 1994 .

[13]  X. Lurton Theoretical modelling of acoustical measurement accuracy for swath bathymetric sonars , 2003 .

[14]  Christophe Sintes,et al.  Strategies for unwrapping multisensors interferometric side scan sonar phase , 2000, OCEANS 2000 MTS/IEEE Conference and Exhibition. Conference Proceedings (Cat. No.00CH37158).

[15]  G. Llort-Pujol,et al.  A new approach for fast and high-resolution interferometric bathymetry , 2006, OCEANS 2006 - Asia Pacific.

[16]  J. Wishart THE GENERALISED PRODUCT MOMENT DISTRIBUTION IN SAMPLES FROM A NORMAL MULTIVARIATE POPULATION , 1928 .

[17]  Stefano Tebaldini,et al.  On the Exploitation of Target Statistics for SAR Interferometry Applications , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[18]  M. Watson,et al.  Ultra-Short Baseline Acoustic Tracking System , 1983, Proceedings OCEANS '83.

[19]  H. V. Trees,et al.  Some Lower Bounds on Signal Parameter Estimation , 2007 .

[20]  Xavier Lurton,et al.  An Introduction to Underwater Acoustics: Principles and Applications , 2010 .

[21]  N. Weiss A Course in Probability , 2005 .

[22]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[23]  Thierry Rabaute,et al.  Radar interferometry: limits and potential , 1993, IEEE Trans. Geosci. Remote. Sens..

[24]  H. Vincent Poor,et al.  An Introduction to Signal Detection and Estimation , 1994, Springer Texts in Electrical Engineering.

[25]  Douglas A. Gray,et al.  Detecting scene changes using synthetic aperture Radar interferometry , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[26]  E. Lehmann Testing Statistical Hypotheses , 1960 .

[27]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[28]  Thierry Chonavel,et al.  Statistical Signal Processing , 2002 .

[29]  J.S. Bird,et al.  Analysis of swath bathymetry sonar accuracy , 2005, IEEE Journal of Oceanic Engineering.

[30]  X. Lurton Swath bathymetry using phase difference: theoretical analysis of acoustical measurement precision , 2000, IEEE Journal of Oceanic Engineering.