Contributions of Satellite Laser Ranging to Past and Future Radar Altimetry Missions

Satellite laser ranging (SLR) has proven avery efficient method for contributingto the tracking of altimetric satellites anddetermining accurately their orbitalthough hampered by the non-worldwide coverageand the meteorologicalconditions. Indeed, in some cases it is the onlymethod available to determinethe satellite orbit (e.g., the orbits of the ERS-1and Geosat-Follow-On missions).Moreover, any operational and non-weather dependenttechniques, like GPS,DORIS, PRARE, can exhibit systematic errors inpositioning and orbitography. Acomparison with SLR results allows to evidence sucherrors and vice versa. Fordoing that, two different approaches for determiningprecise orbits can beconsidered: one based on global orbit determination,the other on a short-arctechnique used to locally improve a global orbitdetermined by another trackingtechniques, such as DORIS or GPS. We can thusvalidate a global orbit andachieve orbit quality control to a level of2 to 3 centimeters at present and expectto achieve a level of 1 to 2 centimeters inthe near future. Errors induced bystation coordinates or by the gravity field(geographically correlated errors, forexample) can be estimated from SLR tracking data.Colocation experiments withdifferent techniques in the same geodetic siteplay also a key role to ensure preciserelationships between the geodetic referenceframes linked to each technique. Inparticular, the role of the SLR technique is tostrengthen the vertical component(including velocity) of the positioning, whichis crucial for altimetry missions.The role of SLR data in the modelling of the firstterms of the gravity field has finally to be emphasized,which is of primary importance in orbitography,whatever the tracking technique used.Another application of SLR technology is thesatellite altimeter calibration. Examples of past calibrationand future experiments are given, including theaccuracy we can expect from the Jason-1 and EnviSatspace oceanography missions.

[1]  J A Schwartz Laser ranging error budget for the TOPEX/POSEIDON satellite. , 1990, Applied optics.

[2]  G. J. Mets,et al.  ERS-1 precise orbit determination , 1993 .

[3]  P. Exertier Geopotential from space techniques , 1993 .

[4]  Gary T. Mitchum,et al.  Comparison of TOPEX sea surface heights and tide gauge sea levels , 1994 .

[5]  Bob E. Schutz,et al.  Gravity model development for TOPEX/POSEIDON: Joint gravity models 1 and 2 , 1994 .

[6]  Penina Axelrad,et al.  Calibration of the TOPEX altimeter using a GPS buoy , 1994 .

[7]  Bob E. Schutz,et al.  Precision orbit determination for TOPEX/POSEIDON , 1994 .

[8]  C. Valorge,et al.  Precise Centre National d'Etudes Spatiales orbits for TOPEX/POSEIDON: Is reaching 2 cm still a challenge? , 1994 .

[9]  W. G. Melbourne,et al.  GPS precise tracking of TOPEX/POSEIDON: Results and implications , 1994 .

[10]  E. J. Christensen,et al.  Calibration of TOPEX/POSEIDON at Platform Harvest , 1994 .

[11]  Yves Menard,et al.  Calibration of the TOPEX/POSEIDON altimeters at Lampedusa: Additional results at Harvest , 1994 .

[12]  Pascal Willis,et al.  First assessment of GPS-based reduced dynamic orbit determination on TOPEX/Poseidon , 1994 .

[13]  Steven M. Klosko,et al.  The temporal and spatial characteristics of TOPEX/POSEIDON radial orbit error , 1995 .

[14]  R. Cheney Preface [to special section on TOPEX/POSEIDON: Scientific Results] , 1995 .

[15]  Pierre Exertier,et al.  Satellite altimetry from a short‐arc orbit technique: Application to the Mediterranean , 1995 .

[16]  A. Cazenave,et al.  Temporal Variations of the Gravity Field from Lageos 1 and Lageos 2 Observations , 1996 .

[17]  Jean-Paul Berthias,et al.  First results of reduced dynamics with DORIS on TOPEX/Poseidon and SPOT , 1996 .

[18]  G. W. Davis,et al.  The Joint Gravity Model 3 , 1996 .

[19]  P. Exertier,et al.  Calibration of radar altimeters and validation of orbit determination in the Corsica-Capraia area , 1997 .

[20]  P. Bonnefond,et al.  Analytical solution of perturbed circular motion: application to satellite geodesy , 1997 .

[21]  John J. Degnan Satellite laser ranging: scientific and technological challenges for the new millennium , 1997, Remote Sensing.

[22]  Jean-Charles Marty,et al.  Long-wavelength global gravity field models: GRIM4-S4, GRIM4-C4 , 1997 .

[23]  Byron D. Tapley,et al.  Determination of long-term changes in the Earth's gravity field from satellite laser ranging observations , 1997 .

[24]  N. K. Pavlis,et al.  The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96 , 1998 .

[25]  C. Boucher,et al.  The ITRF96 realization and its associated velocity field , 1998 .

[26]  C. K. Shum,et al.  On the use of tide gauges to determine altimeter drift , 1998 .

[27]  Etienne Samain,et al.  Millimetric Lunar Laser Ranging at OCA (Observatoire de la Côte d'Azur) , 1998 .

[28]  Precise ERS-2 orbit determination using SLR, PRARE, and RA observations , 1998 .

[29]  P. Visser,et al.  Precise orbit determination and gravity field improvement for the ERS satellites , 1998 .

[30]  Pierre Exertier,et al.  Stability control of range biases on the French laser ranging stations , 1999, Remote Sensing.

[31]  David E. Smith,et al.  Earth scale defined by modern satellite ranging observations , 1999 .

[32]  Pierre Exertier,et al.  Geographically correlated errors observed from a laser‐based short‐arc technique , 1999 .

[33]  A. Cazenave,et al.  GLOBAL-SCALE INTERACTIONS BETWEEN THE SOLID EARTH AND ITS FLUID ENVELOPES AT THE SEASONAL TIME SCALE , 1999 .

[34]  Jean-François Crétaux,et al.  Sea level changes from Topex‐Poseidon altimetry and tide gauges, and vertical crustal motions from DORIS , 1999 .

[35]  Rolf König,et al.  A new global Earth's gravity field model from satellite orbit perturbations: GRIM5‐S1 , 2000 .

[36]  J Nicolas,et al.  French transportable laser ranging station: scientific objectives, technical features, and performance. , 2000, Applied optics.

[37]  Pierre Exertier,et al.  Geodynamics from the analysis of the mean orbital motion of geodetic satellites , 2000 .

[38]  Etienne Samain,et al.  Centimeter Accuracy for the French Transportable Laser Ranging Station (FTLRS) through Sub-System Controls , 2001 .