A survey of shaped-based registration and segmentation techniques for cardiac images

Heart disease is the leading cause of death in the modern world. Cardiac imaging is routinely applied for assessment and diagnosis of cardiac diseases. Computerized image analysis methods are now widely applied to cardiac segmentation and registration in order to extract the anatomy and contractile function of the heart. The vast number of recent papers on this topic point to the need for an up to date survey in order to summarize and classify the published literature. This paper presents a survey of shape modeling applications to cardiac image analysis from MRI, CT, echocardiography, PET, and SPECT and aims to (1) introduce new methodologies in this field, (2) classify major contributions in image-based cardiac modeling, (3) provide a tutorial to beginners to initiate their own studies, and (4) introduce the major challenges of registration and segmentation and provide practical examples. The techniques surveyed include statistical models, deformable models/level sets, biophysical models, and non-rigid registration using basis functions. About 130 journal articles are categorized based on methodology, output, imaging system, modality, and validations. The advantages and disadvantages of the registration and validation techniques are discussed as appropriate in each section.

[1]  Junaed Sattar Snakes , Shapes and Gradient Vector Flow , 2022 .

[2]  Milan Sonka,et al.  Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images , 2001, IEEE Transactions on Medical Imaging.

[3]  Dinggang Shen,et al.  Estimating myocardial motion by 4D image warping , 2009, Pattern Recognit..

[4]  Alain Trouvé,et al.  Diffeomorphisms Groups and Pattern Matching in Image Analysis , 1998, International Journal of Computer Vision.

[5]  Alejandro F. Frangi,et al.  Bilinear Models for Spatio-Temporal Point Distribution Analysis , 2009, 2007 IEEE 11th International Conference on Computer Vision.

[6]  James S. Duncan,et al.  A coupled deformable model for tracking myocardial borders from real-time echocardiography using an incompressibility constraint , 2010, Medical Image Anal..

[7]  Milan Sonka,et al.  Object localization and border detection criteria design in edge-based image segmentation: automated learning from examples , 2000, IEEE Transactions on Medical Imaging.

[8]  James S. Duncan,et al.  Point-tracked quantitative analysis of left ventricular surface motion from 3-D image sequences , 2000, IEEE Transactions on Medical Imaging.

[9]  Andriy Myronenko,et al.  Point Set Registration: Coherent Point Drift , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  N. Tustison,et al.  Biventricular myocardial strains via nonrigid registration of anatomical NURBS model [corrected]. , 2006, IEEE transactions on medical imaging.

[11]  J. Alison Noble,et al.  Ultrasound image segmentation: a survey , 2006, IEEE Transactions on Medical Imaging.

[12]  J. Tamez-Peña,et al.  Local force model for cardiac dynamics analysis from volumetric image sequences. , 2003, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[13]  Daniel Rueckert,et al.  Fast Spatio-temporal Free-Form Registration of Cardiac MR Image Sequences , 2004, FIMH.

[14]  Juha Koikkalainen,et al.  Statistical shape model of atria, ventricles and epicardium from short- and long-axis MR images , 2004, Medical Image Anal..

[15]  C. Lamberti,et al.  Maximum likelihood segmentation of ultrasound images with Rayleigh distribution , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[16]  Paul F. Whelan,et al.  Left-ventricle myocardium segmentation using a coupled level-set with a priori knowledge , 2006, Comput. Medical Imaging Graph..

[17]  Amir A. Amini,et al.  A MAP framework for tag line detection in SPAMM data using Markov random fields on the B-spline solid , 2001, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2001).

[18]  Thomas S. Denney,et al.  Three-dimensional myocardial strain reconstruction from tagged MRI using a cylindrical B-spline model , 2004, IEEE Transactions on Medical Imaging.

[19]  Daniel Rueckert,et al.  Segmentation of 4D Cardiac MR Images Using a Probabilistic Atlas and the EM Algorithm , 2003, MICCAI.

[20]  Alejandro F. Frangi,et al.  Automatic Construction of 3D-ASM Intensity Models by Simulating Image Acquisition: Application to Myocardial Gated SPECT Studies , 2008, IEEE Transactions on Medical Imaging.

[21]  Thomas Lange,et al.  Automatic segmentation of the liver for preoperative planning of resections. , 2003, Studies in health technology and informatics.

[22]  Boudewijn P. F. Lelieveldt,et al.  Time Continuous Tracking and Segmentation of Cardiovascular Magnetic Resonance Images Using Multidimensional Dynamic Programming , 2006, Investigative radiology.

[23]  Amir A. Amini,et al.  Quantitative coronary angiography with deformable spline models , 1997, IEEE Transactions on Medical Imaging.

[24]  Petia Radeva,et al.  Deformable B-Solids and Implicit Snakes for 3D Localization and Tracking of SPAMM MRI Data , 1997, Comput. Vis. Image Underst..

[25]  Carlos R. Castro-Pareja,et al.  Registration-assisted segmentation of real-time 3-D echocardiographic data using deformable models , 2005, IEEE Transactions on Medical Imaging.

[26]  James S. Duncan,et al.  Estimation of 3-D left ventricular deformation from medical images using biomechanical models , 2002, IEEE Transactions on Medical Imaging.

[27]  Shuo Li,et al.  Tracking Endocardial Motion Via Multiple Model Filtering , 2010, IEEE Transactions on Biomedical Engineering.

[28]  A. Rahmouni,et al.  Segmentation of cardiac cine-MR images and myocardial deformation assessment using level set methods. , 2005, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[29]  Fred A. Mettler Jr. Md Mph,et al.  Essentials of Nuclear Medicine Imaging , 1998 .

[30]  Shengyong Chen,et al.  Parametric Shape Representation by a Deformable NURBS Model for Cardiac Functional Measurements , 2011, IEEE Transactions on Biomedical Engineering.

[31]  Jens von Berg,et al.  Automated Segmentation of the Left Ventricle in Cardiac MRI , 2003, MICCAI.

[32]  John K. Tsotsos,et al.  Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI , 2008, Medical Image Anal..

[33]  Milan Sonka,et al.  3-D active appearance models: segmentation of cardiac MR and ultrasound images , 2002, IEEE Transactions on Medical Imaging.

[34]  James S. Duncan,et al.  Boundary element method-based regularization for recovering of LV deformation , 2007, Medical Image Anal..

[35]  Leon Axel,et al.  Tagged Magnetic Resonance Imaging of the Heart: a Survey , 2004 .

[36]  Ronald H. Huesman,et al.  Elastic material model mismatch effects in deformable motion estimation , 1999 .

[37]  David Cristinacce,et al.  Automatic feature localisation with constrained local models , 2008, Pattern Recognit..

[38]  James S. Duncan,et al.  Generalized robust point matching using an extended free-form deformation model: application to cardiac images , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[39]  Hae-Yeoun Lee,et al.  Left ventricle segmentation using graph searching on intensity and gradient and a priori knowledge (lvGIGA) for short‐axis cardiac magnetic resonance imaging , 2008, Journal of magnetic resonance imaging : JMRI.

[40]  Hervé Delingette,et al.  A Statistical Model for Quantification and Prediction of Cardiac Remodelling: Application to Tetralogy of Fallot , 2011, IEEE Transactions on Medical Imaging.

[41]  Wen Fang,et al.  Incorporating temporal information into active contour method for detecting heart wall boundary from echocardiographic image sequence , 2008, Comput. Medical Imaging Graph..

[42]  Dimitris N. Metaxas,et al.  Metamorphs: Deformable Shape and Appearance Models , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  Jyrki Lötjönen,et al.  A 3-D model-based registration approach for the PET, MR and MCG cardiac data fusion , 2003, Medical Image Anal..

[44]  Dan Adam,et al.  Increase in endocardial rotation during doxorubicin treatment , 2010, Annals of the New York Academy of Sciences.

[45]  Alejandro F. Frangi,et al.  Automatic 3D ASM Construction via Atlas-Based Landmarking and Volumetric Elastic Registration , 2001, IPMI.

[46]  Xiaoxu Wang,et al.  Automated 3D Motion Tracking Using Gabor Filter Bank, Robust Point Matching, and Deformable Models , 2010, IEEE Transactions on Medical Imaging.

[47]  E. McVeigh,et al.  Imaging myocardial strain , 2001, IEEE Signal Process. Mag..

[48]  Shaohua Kevin Zhou,et al.  Shape regression machine and efficient segmentation of left ventricle endocardium from 2D B-mode echocardiogram , 2010, Medical Image Anal..

[49]  Nicholas Ayache,et al.  Definition of a four-dimensional continuous planispheric transformation for the tracking and the analysis of left-ventricle motion , 1998, Medical Image Anal..

[50]  Dan Adam,et al.  Layer-specific assessment of left ventricular function by utilizing wavelet de-noising: a validation study , 2010, Medical & Biological Engineering & Computing.

[51]  Monica Hernandez,et al.  Registration of Anatomical Images Using Paths of Diffeomorphisms Parameterized with Stationary Vector Field Flows , 2009, International Journal of Computer Vision.

[52]  Caroline Petitjean,et al.  A review of segmentation methods in short axis cardiac MR images , 2011, Medical Image Anal..

[53]  R A Rettig,et al.  Medical innovation duels cost containment. , 1994, Health affairs.

[54]  J. C. Gower,et al.  Projection Procrustes problems , 2004 .

[55]  Milan Sonka,et al.  4-D Cardiac MR Image Analysis: Left and Right Ventricular Morphology and Function , 2010, IEEE Transactions on Medical Imaging.

[56]  Alejandro F. Frangi,et al.  Automatic construction of multiple-object three-dimensional statistical shape models: application to cardiac modeling , 2002, IEEE Transactions on Medical Imaging.

[57]  Max A. Viergever,et al.  Adaptive local multi-atlas segmentation: Application to the heart and the caudate nucleus , 2010, Medical Image Anal..

[58]  Michael Unser,et al.  Myocardial motion analysis from B-mode echocardiograms , 2005, IEEE Transactions on Image Processing.

[59]  Catherine M. Otto,et al.  Textbook of Clinical Echocardiography , 2004 .

[60]  Amir A. Amini,et al.  Coupled B-snake grids and constrained thin-plate splines for analysis of 2-D tissue deformations from tagged MRI , 1998, IEEE Transactions on Medical Imaging.

[61]  Hui Wang,et al.  Cardiac Motion and Deformation Recovery From MRI: A Review , 2012, IEEE Transactions on Medical Imaging.

[62]  C. Truesdell,et al.  The Non-Linear Field Theories Of Mechanics , 1992 .

[63]  José M. F. Moura,et al.  STACS: new active contour scheme for cardiac MR image segmentation , 2005, IEEE Transactions on Medical Imaging.

[64]  W. Eric L. Grimson,et al.  A shape-based approach to the segmentation of medical imagery using level sets , 2003, IEEE Transactions on Medical Imaging.

[65]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[66]  A. Laine,et al.  Segmentation of real-time three-dimensional ultrasound for quantification of ventricular function: a clinical study on right and left ventricles. , 2005, Ultrasound in medicine & biology.

[67]  Dimitris N. Metaxas,et al.  In vivo strain and stress estimation of the heart left and right ventricles from MRI images , 2003, Medical Image Anal..

[68]  P.H. Pretorius,et al.  Estimation of the rigid-body motion from images using a generalized center-of-mass points approach , 2005, IEEE Nuclear Science Symposium Conference Record, 2005.

[69]  Jean-Philippe Thirion,et al.  Image matching as a diffusion process: an analogy with Maxwell's demons , 1998, Medical Image Anal..

[70]  Hervé Delingette,et al.  Deformable biomechanical models: Application to 4D cardiac image analysis , 2003, Medical Image Anal..

[71]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[72]  James S. Duncan,et al.  Estimation of 3D left ventricular deformation from echocardiography , 2001, Medical Image Anal..

[73]  Alejandro F. Frangi,et al.  Automated Detection of Regional Wall Motion Abnormalities Based on a Statistical Model Applied to Multislice Short-Axis Cardiac MR Images , 2009, IEEE Transactions on Medical Imaging.

[74]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[75]  R. Huesman,et al.  Four-dimensional processing of deformable cardiac PET data , 2000, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. MMBIA-2000 (Cat. No.PR00737).

[76]  Olivier Ecabert,et al.  Optimizing boundary detection via Simulated Search with applications to multi-modal heart segmentation , 2010, Medical Image Anal..

[77]  Hamid Abrishami Moghaddam,et al.  Quantitative analysis of left ventricular performance from sequences of cardiac magnetic resonance imaging using active mesh model , 2009, Comput. Medical Imaging Graph..

[78]  Stefan Klein,et al.  Nonrigid registration of dynamic medical imaging data using nD + t B-splines and a groupwise optimization approach , 2011, Medical Image Anal..

[79]  Alistair A. Young,et al.  Parameter distribution models for estimation of population based left ventricular deformation using sparse fiducial markers , 2005, IEEE Transactions on Medical Imaging.

[80]  Marcos Martín-Fernández,et al.  Unsupervised 4D myocardium segmentation with a Markov Random Field based deformable model , 2011, Medical Image Anal..

[81]  Denis Friboulet,et al.  B-Spline Explicit Active Surfaces: An Efficient Framework for Real-Time 3-D Region-Based Segmentation , 2012, IEEE Transactions on Image Processing.

[82]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[83]  J. Alison Noble,et al.  Automated 3-D echocardiography analysis compared with manual delineations and SPECT MUGA , 2002, IEEE Transactions on Medical Imaging.

[84]  Tracy L. Faber,et al.  Incremental prognostic value of left ventricular function by myocardial ecg-gated fdg pet imaging in patients with ischemic cardiomyopathy , 2004, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology.

[85]  Michel Barlaud,et al.  Non-parametric and non-rigid registration method applied to myocardial gated SPECT , 2000, 2000 IEEE Nuclear Science Symposium. Conference Record (Cat. No.00CH37149).

[86]  Ramesh C. Jain,et al.  Using Dynamic Programming for Solving Variational Problems in Vision , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[87]  P. Malani Harrison’s Principles of Internal Medicine , 2012 .

[88]  Han-Chin Wu,et al.  Continuum mechanics and plasticity , 2004 .

[89]  K. Y. Esther Leung,et al.  Probabilistic framework for tracking in artifact-prone 3D echocardiograms , 2010, Medical Image Anal..

[90]  Shuo Li,et al.  Max-flow segmentation of the left ventricle by recovering subject-specific distributions via a bound of the Bhattacharyya measure , 2012, Medical Image Anal..

[91]  Olivier Ecabert,et al.  Automatic Model-Based Segmentation of the Heart in CT Images , 2008, IEEE Transactions on Medical Imaging.

[92]  Xiaoyi Jiang,et al.  Motion Correction in Dual Gated Cardiac PET Using Mass-Preserving Image Registration , 2012, IEEE Transactions on Medical Imaging.

[93]  D. L. Hykes,et al.  Ultrasound Physics and Instrumentation , 1985 .

[94]  James S. Duncan,et al.  Segmentation of the Left Ventricle From Cardiac MR Images Using a Subject-Specific Dynamical Model , 2010, IEEE Transactions on Medical Imaging.

[95]  Erkki Oja,et al.  Independent Component Analysis , 2001 .

[96]  Boudewijn P. F. Lelieveldt,et al.  Model driven quantification of left ventricular function from sparse single-beat 3D echocardiography , 2010, Medical Image Anal..

[97]  Rasmus Larsen,et al.  Multi-band modelling of appearance , 2003, Image Vis. Comput..

[98]  Marcel Breeuwer,et al.  Automatic Contour Propagation in Cine Cardiac Magnetic Resonance Images , 2006, IEEE Transactions on Medical Imaging.

[99]  Amir A. Amini,et al.  Spatio-temporal tracking of myocardial deformations with a 4-D B-spline model from tagged MRI , 1999, IEEE Transactions on Medical Imaging.

[100]  Eigil Samset,et al.  Unifying Statistical Classification and Geodesic Active Regions for Segmentation of Cardiac MRI , 2008, IEEE Transactions on Information Technology in Biomedicine.

[101]  Paul F. Whelan,et al.  A Novel Model-Based 3D ${+}$Time Left Ventricular Segmentation Technique , 2011, IEEE Transactions on Medical Imaging.

[102]  E L Ritman,et al.  Invariant total heart volume in the intact thorax. , 1985, The American journal of physiology.

[103]  Alejandro F. Frangi,et al.  A spatiotemporal statistical atlas of motion for the quantification of abnormal myocardial tissue velocities , 2011, Medical Image Anal..

[104]  Junzhou Huang,et al.  4D Cardiac Reconstruction Using High Resolution CT Images , 2011, FIMH.

[105]  Denis Friboulet,et al.  A level set framework with a shape and motion prior for segmentation and region tracking in echocardiography , 2006, Medical Image Anal..

[106]  S. Cherry,et al.  Physics in Nuclear Medicine , 2004 .

[107]  Jerry L. Prince,et al.  Measurement of Cardiac Deformations from MRI: Physical and Mathematical Models , 2001, Computational Imaging and Vision.

[108]  V. Fuster Hurst's the Heart , 1966 .

[109]  Eric A. Hoffman,et al.  Heart-lung interaction: Effect on regional lung air content and total heart volume , 1987, Annals of Biomedical Engineering.

[110]  A. Webb,et al.  Introduction to biomedical imaging , 2002 .

[111]  Johan Montagnat,et al.  4D deformable models with temporal constraints: application to 4D cardiac image segmentation , 2005, Medical Image Anal..

[112]  Ioannis A. Kakadiaris,et al.  Automated left ventricular segmentation in cardiac MRI , 2006, IEEE Transactions on Biomedical Engineering.

[113]  Jürgen Weese,et al.  Automated segmentation of the left ventricle in cardiac MRI , 2004, Medical Image Anal..

[114]  James S. Duncan,et al.  Combinative Multi-scale Level Set Framework for Echocardiographic Image Segmentation , 2002, MICCAI.

[115]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[116]  László Szilágyi,et al.  A patient specific electro-mechanical model of the heart , 2011, Comput. Methods Programs Biomed..

[117]  Oskar M. Skrinjar,et al.  Left Ventricular Deformation Recovery From Cine MRI Using an Incompressible Model , 2007, IEEE Transactions on Medical Imaging.

[118]  Guang-Zhong Yang,et al.  An Inter-Landmark Approach to 4-D Shape Extraction and Interpretation: Application to Myocardial Motion Assessment in MRI , 2011, IEEE Transactions on Medical Imaging.

[119]  I. Wolf,et al.  ROPES: a semiautomated segmentation method for accelerated analysis of three-dimensional echocardiographic data , 2002, IEEE Transactions on Medical Imaging.

[120]  Juha Koikkalainen,et al.  Methods of Artificial Enlargement of the Training Set for Statistical Shape Models , 2008, IEEE Transactions on Medical Imaging.

[121]  Torsten Rohlfing,et al.  Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains , 2004, NeuroImage.

[122]  Amir A. Amini,et al.  Myocardial kinematics from tagged MRI based on a 4-D B-spline model , 2003, IEEE Transactions on Biomedical Engineering.

[123]  Daniel Rueckert,et al.  Analysis of 3-D myocardial motion in tagged MR images using nonrigid image registration , 2004, IEEE Transactions on Medical Imaging.

[124]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[125]  J. Weiss,et al.  Measurement of strain in the left ventricle during diastole with cine-MRI and deformable image registration. , 2005, Journal of biomechanical engineering.

[126]  Milan Sonka,et al.  Automatic segmentation of echocardiographic sequences by active appearance motion models , 2002, IEEE Transactions on Medical Imaging.

[127]  Patrick Clarysse,et al.  A dynamic elastic model for segmentation and tracking of the heart in MR image sequences , 2010, Medical Image Anal..

[128]  W. F. Hamilton,et al.  MOVEMENTS OF THE BASE OF THE VENTRICLE AND THE RELATIVE CONSTANCY OF THE CARDIAC VOLUME , 1932 .

[129]  James S. Duncan,et al.  Estimating 3D Strain from 4D Cine-MRI and Echocardiography: In-Vivo Validation , 2000, MICCAI.

[130]  R. Haralick,et al.  Integrated surface model optimization for freehand three-dimensional echocardiography , 2002, IEEE Transactions on Medical Imaging.

[131]  Michael Unser,et al.  Spatio-temporal nonrigid registration for ultrasound cardiac motion estimation , 2005, IEEE Transactions on Medical Imaging.

[132]  Sébastien Ourselin,et al.  A Registration-Based Propagation Framework for Automatic Whole Heart Segmentation of Cardiac MRI , 2010, IEEE Transactions on Medical Imaging.

[133]  Hervé Delingette,et al.  Registration of 4D Cardiac CT Sequences Under Trajectory Constraints With Multichannel Diffeomorphic Demons , 2010, IEEE Transactions on Medical Imaging.

[134]  Alexander Dick,et al.  Segmentation of Left Ventricle in Cardiac Cine MRI: An Automatic Image-Driven Method , 2009, FIMH.

[135]  M Desco,et al.  Cardiac motion analysis from ultrasound sequences using nonrigid registration: validation against Doppler tissue velocity. , 2006, Ultrasound in medicine & biology.

[136]  Marie-Pierre Jolly,et al.  Automatic Segmentation of the Left Ventricle in Cardiac MR and CT Images , 2006, International Journal of Computer Vision.

[137]  Daniel Rueckert,et al.  Automatic anatomical brain MRI segmentation combining label propagation and decision fusion , 2006, NeuroImage.

[138]  Denis Friboulet,et al.  Detection of the whole myocardium in 2D-echocardiography for multiple orientations using a geometrically constrained level-set , 2012, Medical Image Anal..

[139]  Petia Radeva,et al.  Tag surface reconstruction and tracking of myocardial beads from SPAMM-MRI with parametric B-spline surfaces , 2001, IEEE Transactions on Medical Imaging.

[140]  Gustavo Carneiro,et al.  The Segmentation of the Left Ventricle of the Heart From Ultrasound Data Using Deep Learning Architectures and Derivative-Based Search Methods , 2012, IEEE Transactions on Image Processing.

[141]  Shuo Li,et al.  Embedding Overlap Priors in Variational Left Ventricle Tracking , 2009, IEEE Transactions on Medical Imaging.

[142]  Huafeng Liu,et al.  Meshfree implementation of individualized active cardiac dynamics , 2010, Comput. Medical Imaging Graph..

[143]  Nassir Navab,et al.  Complete Valvular Heart Apparatus Model from 4D Cardiac CT , 2010, MICCAI.

[144]  Françoise J. Prêteux,et al.  A non-rigid registration approach for quantifying myocardial contraction in tagged MRI using generalized information measures , 2005, Medical Image Anal..

[145]  Alexander I. Veress,et al.  Strain Measurement in the Left Ventricle During Systole with Deformable Image Registration , 2007, FIMH.

[146]  S. Kovacs,et al.  Assessment and consequences of the constant-volume attribute of the four-chambered heart. , 2003, American journal of physiology. Heart and circulatory physiology.

[147]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[148]  Daniel Rueckert,et al.  Nonrigid registration using free-form deformations: application to breast MR images , 1999, IEEE Transactions on Medical Imaging.

[149]  Timothy F. Cootes,et al.  Combining point distribution models with shape models based on finite element analysis , 1994, Image Vis. Comput..

[150]  Patrick Clarysse,et al.  A review of cardiac image registration methods , 2002, IEEE Transactions on Medical Imaging.

[151]  Paul Suetens,et al.  Three-Dimensional Cardiac Strain Estimation Using Spatio–Temporal Elastic Registration of Ultrasound Images: A Feasibility Study , 2008, IEEE Transactions on Medical Imaging.

[152]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[153]  Timothy F. Cootes,et al.  Active Appearance Models , 1998, ECCV.

[154]  John Ashburner,et al.  A fast diffeomorphic image registration algorithm , 2007, NeuroImage.

[155]  Alain Trouvé,et al.  Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms , 2005, International Journal of Computer Vision.

[156]  R T Constable,et al.  Quantification of 3-D regional myocardial deformation: shape-based analysis of magnetic resonance images. , 2001, American journal of physiology. Heart and circulatory physiology.

[157]  J. Alison Noble,et al.  A shape-space-based approach to tracking myocardial borders and quantifying regional left-ventricular function applied in echocardiography , 2002, IEEE Transactions on Medical Imaging.

[158]  Alejandro F. Frangi,et al.  Temporal diffeomorphic free-form deformation: Application to motion and strain estimation from 3D echocardiography , 2012, Medical Image Anal..

[159]  John W. Clark,et al.  Speckle Tracking in Intracardiac Echocardiography for the Assessment of Myocardial Deformation , 2009, IEEE Transactions on Biomedical Engineering.

[160]  Timothy F. Cootes,et al.  A mixture model for representing shape variation , 1999, Image Vis. Comput..

[161]  Jøger Hansegård,et al.  Constrained Active Appearance Models for Segmentation of Triplane Echocardiograms , 2007, IEEE Transactions on Medical Imaging.

[162]  Cristian Lorenz,et al.  A comprehensive shape model of the heart , 2006, Medical Image Anal..

[163]  Hervé Delingette,et al.  A Computational Framework for the Statistical Analysis of Cardiac Diffusion Tensors: Application to a Small Database of Canine Hearts , 2007, IEEE Transactions on Medical Imaging.

[164]  Maxime Sermesant,et al.  Cardiac Function Estimation from MRI Using a Heart Model and Data Assimilation: Advances and Difficulties , 2005, FIMH.

[165]  Alejandro F. Frangi,et al.  Three-dimensional modeling for functional analysis of cardiac images, a review , 2001, IEEE Transactions on Medical Imaging.

[166]  Oskar M. Skrinjar,et al.  Myocardial deformation recovery from cine MRI using a nearly incompressible biventricular model , 2008, Medical Image Anal..

[167]  Bing Li,et al.  Guiding automated left ventricular chamber segmentation in cardiac imaging using the concept of conserved myocardial volume , 2008, Comput. Medical Imaging Graph..

[168]  Ronald G. Grainger,et al.  Textbook of Radiology , 1969 .

[169]  Simon R. Cherry,et al.  Physics in Nuclear Medicine , 1987 .

[170]  Max A. Viergever,et al.  Multi-Atlas-Based Segmentation With Local Decision Fusion—Application to Cardiac and Aortic Segmentation in CT Scans , 2009, IEEE Transactions on Medical Imaging.

[171]  T L Faber,et al.  Left ventricular function and perfusion from gated SPECT perfusion images: an integrated method. , 1999, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[172]  Dorin Comaniciu,et al.  Four-Chamber Heart Modeling and Automatic Segmentation for 3-D Cardiac CT Volumes Using Marginal Space Learning and Steerable Features , 2008, IEEE Transactions on Medical Imaging.

[173]  Sébastien Ourselin,et al.  Whole Heart Segmentation of Cardiac MRI Using Multiple Path Propagation Strategy , 2010, MICCAI.

[174]  Nicos Maglaveras,et al.  Model-based processing scheme for quantitative 4-D cardiac MRI analysis , 2002, IEEE Transactions on Information Technology in Biomedicine.

[175]  Dinggang Shen,et al.  An adaptive-focus statistical shape model for segmentation and shape modeling of 3-D brain structures , 2001, IEEE Transactions on Medical Imaging.