Compressive response and microstructural evolution of in-situ TiB2 particle-reinforced 7075 aluminum matrix composite

[1]  C. Peng,et al.  Microstructures and mechanical properties of Al 2519 matrix composites reinforced with Ti-coated SiC particles , 2020 .

[2]  Yi Wu,et al.  Simultaneously increasing strength and ductility of nanoparticles reinforced Al composites via accumulative orthogonal extrusion process , 2018 .

[3]  D. Shan,et al.  Study on hot deformation behavior and workability of squeeze-cast 20 vol%SiCw/6061Al composites using processing map , 2018 .

[4]  Yujuan Wu,et al.  Microstructure study of cold rolling nanosized in-situ TiB 2 particle reinforced Al composites , 2017 .

[5]  Xiaohui Wang,et al.  Hot deformation characterization of ultrahigh strength stainless steel through processing maps generated using different instability criteria , 2017 .

[6]  Hui Zhang,et al.  Hot deformation characteristics and mechanism of PM 8009Al/SiC particle reinforced composites , 2017 .

[7]  A. Chaichi,et al.  Processing map and microstructure evaluation of AA6061/Al 2 O 3 nanocomposite at different temperatures , 2017 .

[8]  Yujuan Wu,et al.  Multi-scale study of microstructure evolution in hot extruded nano-sized TiB2 particle reinforced aluminum composites , 2017 .

[9]  Jun Zhou,et al.  Hot deformation behaviors and processing maps of B4C/Al6061 neutron absorber composites , 2017 .

[10]  S. Dey,et al.  Processing map-microstructure evolution correlation of hot compressed near alpha titanium alloy (TiHy 600) , 2017 .

[11]  I. Sabirov,et al.  Development of constitutive relationship and processing map for Al-6.65Si-0.44Mg alloy and its composite with B4C particulates , 2016 .

[12]  T. Senthilvelan,et al.  Investigations on the hot workability characteristics and deformation mechanisms of aluminium alloy-Al2O3 nanocomposite , 2015 .

[13]  D. Schryvers,et al.  Quantitative study of particle size distribution in an in-situ grown Al–TiB2 composite by synchrotron X-ray diffraction and electron microscopy , 2015 .

[14]  Di Zhang,et al.  Hot deformation and processing maps of Al2O3/Al composites fabricated by flake powder metallurgy , 2015 .

[15]  Jiwen Li,et al.  Hot deformation behaviors of 35%SiCp/2024Al metal matrix composites , 2014 .

[16]  P. Ma,et al.  Hot deformation behavior of spray-deposited Al-Zn-Mg-Cu alloy , 2014 .

[17]  Yanhui Zhang,et al.  The effects of grain size on the hot deformation and processing map for 7075 aluminum alloy , 2013 .

[18]  V. Senthilkumar,et al.  Analysis of hot deformation behavior of Al 5083–TiC nanocomposite using constitutive and dynamic material models , 2012 .

[19]  S. Ramanathan,et al.  Development of Processing Map for 7075 Al/20% SiCp Composite , 2012, Journal of Materials Engineering and Performance.

[20]  S. Das,et al.  Compressive deformation behaviour of Al alloy (2014)–10 wt.% SiCp composite: Effects of strain rates and temperatures , 2011 .

[21]  S. Ramanathan,et al.  Hot deformation behaviour of 7075 alloy , 2011 .

[22]  Ke Yang,et al.  Constitutive flow behavior and hot workability of powder metallurgy processed 20 vol.%SiCP/2024Al composite , 2010 .

[23]  Hao-wei Wang,et al.  Characterization of deformation stability of in-situ TiB2/6351 composites during hot compression based on Murty criterion , 2010 .

[24]  S. Schmauder,et al.  The influence of the reinforcing particle shape and interface strength on the fracture behavior of a metal matrix composite , 2009 .

[25]  V. Uhlenwinkel,et al.  Hot-deformation behaviour of spray-formed 2014 Al + SiCP metal matrix composites , 2008 .

[26]  L. Geng,et al.  Experimental and numerical studies of the effect of particle size on the deformation behavior of the metal matrix composites , 2007 .

[27]  S. Ramanathan,et al.  Development of processing maps for 2124Al/SiCp composites , 2006 .

[28]  B. S. Murty,et al.  Effect of TiB2 particles on aging response of Al–4Cu alloy , 2004 .

[29]  S. Prasad,et al.  Aluminum Metal-Matrix Composites for Automotive Applications: Tribological Considerations , 2004 .

[30]  E. Cerri,et al.  Hot deformation and processing maps of a particulate reinforced 2618/Al2O3/20p metal matrix composite , 2004 .

[31]  Pasquale Cavaliere,et al.  Isothermal forging of AA2618 reinforced with 20% of alumina particles , 2004 .

[32]  R. Karthikeyan,et al.  Development of processing maps for 6061 Al/15% SiCp composite material , 2004 .

[33]  Y. V. R. K. Prasad,et al.  Processing maps: A status report , 2003 .

[34]  U. F. Kocks,et al.  Physics and phenomenology of strain hardening: the FCC case , 2003 .

[35]  S. Spigarelli,et al.  An analysis of hot formability of the 6061+20% Al2O3 composite by means of different stability criteria , 2002 .

[36]  S. Spigarelli,et al.  Hot deformation and processing maps of a particulate-reinforced 6061+20% Al2O3 composite , 2002 .

[37]  C. F. Feng,et al.  In situ TiB2 reinforced Al alloy composites , 2001 .

[38]  S. Spigarelli,et al.  Temperature and strain-rate sensitivity parameters: Analysis of the deformed metal matrix composite A359/SiC/20p , 2001 .

[39]  S. Murty,et al.  Instability map for hot working of 6061 Al-10 vol% metal matrix composite , 1998 .

[40]  Y. V. R. K. Prasad,et al.  Processing maps for hot working of titanium alloys , 1998 .

[41]  D. Lloyd Particle reinforced aluminium and magnesium matrix composites , 1994 .

[42]  Farghalli A. Mohamed,et al.  Particulate reinforced metal matrix composites — a review , 1991, Journal of Materials Science.