Peptide and peptoid foldamers in medicinal chemistry

Introduction: Proteins and other biologics comprise emerging therapeutic class with efficacies against targets for which development of small-molecule antagonists has been unsuccessful. The biological function of a protein is intimately tied to its sequence-dependent folding. A variety of unnatural oligomer backbones show folding behavior analogous to proteins. Often termed ‘foldamers,’ these compounds have the potential to provide the benefits of existing protein therapeutics while overcoming some drawbacks, such as protease susceptibility. Areas covered: This review surveys work toward the development of foldamer therapeutics based on β-peptides, α-peptoids, β-peptoids and heterogeneous backbones composed of mixtures of these monomers with natural α-residues. Bioactivities targeted by foldamers are diverse but can be broadly divided into two categories: i) functions that require the simple separation of charged and hydrophobic functional groups and ii) functions that require a precise and complex three-dimensional display of side chains in the folded state. Expert opinion: A long-term goal in research on foldamers is to recreate the entire range of structure and function manifested by natural proteins on unnatural backbones. Successes in the development of bioactive foldamers not only show their promise, but also highlight the challenges associated with the invention of general and reliable design strategies. While there is still a long way to go to a clinically used foldamer drug, significant advances in recent years demonstrate the potential of such scaffolds for use in the discovery of new therapeutics.

[1]  S. Gellman,et al.  Unexpected relationships between structure and function in alpha,beta-peptides: antimicrobial foldamers with heterogeneous backbones. , 2004, Journal of the American Chemical Society.

[2]  D. Seebach,et al.  Artificial chemokines: combining chemistry and molecular biology for the elucidation of interleukin-8 functionality. , 2008, Journal of the American Chemical Society.

[3]  Ryan A. Mesch,et al.  Free-floating ultrathin two-dimensional crystals from sequence-specific peptoid polymers. , 2010, Nature materials.

[4]  D. Seebach,et al.  On the Antimicrobial and Hemolytic Activities of Amphiphilic β‐Peptides , 2001 .

[5]  T. Kodadek,et al.  The pharmacophore of a peptoid VEGF receptor 2 antagonist includes both side chain and main chain residues. , 2008, Bioorganic & medicinal chemistry letters.

[6]  S. Werner,et al.  Chemical and Biological Investigations of β‐Oligoarginines , 2004, Chemistry & biodiversity.

[7]  S. Gellman,et al.  Broad distribution of energetically important contacts across an extended protein interface. , 2011, Journal of the American Chemical Society.

[8]  F. E. Weber,et al.  Identification of a receptor mediating absorption of dietary cholesterol in the intestine. , 1998, Biochemistry.

[9]  J. Jaroszewski,et al.  Antiplasmodial and Prehemolytic Activities of α‐Peptide–β‐Peptoid Chimeras , 2007 .

[10]  T. Iwatsubo,et al.  Inhibition of gamma-secretase activity by helical beta-peptide foldamers. , 2009, Journal of the American Chemical Society.

[11]  D. Seebach,et al.  Exploring the Antibacterial and Hemolytic Activity of Shorter‐ and Longer‐Chain β‐, α,β‐, and γ‐Peptides, and of β‐Peptides from β2‐3‐Aza‐ and β3‐2‐Methylidene‐amino Acids Bearing Proteinogenic Side Chains – A Survey , 2005 .

[12]  F. Cohen,et al.  A combinatorial approach to the discovery of efficient cationic peptoid reagents for gene delivery. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[13]  F. Cohen,et al.  Toward the synthesis of artificial proteins: the discovery of an amphiphilic helical peptoid assembly. , 2002, Chemistry & biology.

[14]  S. Gellman,et al.  Antimicrobial 14-Helical β-Peptides: Potent Bilayer Disrupting Agents† , 2004 .

[15]  Michael S. Kay,et al.  Inhibiting HIV Fusion with a β-Peptide Foldamer , 2005 .

[16]  F. Lombardo,et al.  Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. , 2001, Advanced drug delivery reviews.

[17]  J. Karn,et al.  An inhibitor of the Tat/TAR RNA interaction that effectively suppresses HIV-1 replication. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Alanna Schepartz,et al.  Beta-peptides with improved affinity for hDM2 and hDMX. , 2009, Bioorganic & medicinal chemistry.

[19]  K A Dill,et al.  Sequence-specific polypeptoids: a diverse family of heteropolymers with stable secondary structure. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[20]  S. Gellman,et al.  Bacterial species selective toxicity of two isomeric α/β-peptides: Role of membrane lipids , 2005 .

[21]  Stefan Hecht,et al.  Foldamers : structure, properties, and applications , 2007 .

[22]  I. Karle,et al.  Peptide hybrids containing α- and β-amino acids: Structure of a decapeptide β-hairpin with two facing β-phenylalanine residues , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Douglas R. Powell,et al.  Antiparallel Sheet Formation in β-Peptide Foldamers: Effects of β-Amino Acid Substitution on Conformational Preference1 , 1997 .

[24]  Adam R Renslo,et al.  Drug discovery and development for neglected parasitic diseases , 2006, Nature chemical biology.

[25]  D. Seebach,et al.  Inversion of the Configuration of a Single Stereocenter in a β‐Heptapeptide Leads to Drastic Changes in its Interaction with Phospholipid Bilayers , 2009, ChemBioChem.

[26]  S. Gellman,et al.  Mimicry of Host-Defense Peptides by Unnatural Oligomers: Antimicrobial β-Peptides , 2002 .

[27]  T. Kodadek,et al.  A peptoid antagonist of VEGF receptor 2 recognizes a 'hotspot' in the extracellular domain distinct from the hormone-binding site. , 2008, Bioorganic & medicinal chemistry.

[28]  S. Gellman,et al.  Two Helical Conformations from a Single Foldamer Backbone: “Split Personality” in Short α/β‐Peptides , 2004 .

[29]  W. DeGrado,et al.  De Novo Design of Antibacterial β-Peptides , 1999 .

[30]  W Seth Horne,et al.  Foldamers with heterogeneous backbones. , 2008, Accounts of chemical research.

[31]  T. Kodadek,et al.  A peptoid "antibody surrogate" that antagonizes VEGF receptor 2 activity. , 2008, Journal of the American Chemical Society.

[32]  A. Schepartz,et al.  Inhibiting HIV fusion with a beta-peptide foldamer. , 2005, Journal of the American Chemical Society.

[33]  S. Gellman,et al.  Rational development of beta-peptide inhibitors of human cytomegalovirus entry. , 2006, The Journal of biological chemistry.

[34]  S. Gellman,et al.  Interactions of the antimicrobial β‐peptide β‐17 with phospholipid vesicles differ from membrane interactions of magainins , 2003 .

[35]  D. Hoyer,et al.  The cyclo-β-tetrapeptide (β-HPhe-β-HThr-β-HLys-β-HTrp): synthesis, NMR structure in methanol solution, and affinity for human somatostatin receptors , 2000 .

[36]  S. Gellman,et al.  Role of membrane lipids in the mechanism of bacterial species selective toxicity by two α/β-antimicrobial peptides , 2006 .

[37]  J. Johansson,et al.  Biomimicry of surfactant protein C. , 2008, Accounts of chemical research.

[38]  W. DeGrado,et al.  De novo design, synthesis, and characterization of antimicrobial beta-peptides. , 2001, Journal of the American Chemical Society.

[39]  S. Gellman,et al.  Residue-based control of helix shape in beta-peptide oligomers. , 1997, Nature.

[40]  K. Pattabiraman,et al.  The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Amy J. Karlsson,et al.  Antifungal Activity from 14-Helical β-Peptides , 2006 .

[42]  H. Blackwell,et al.  Local and tunable n-->pi* interactions regulate amide isomerism in the peptoid backbone. , 2007, Journal of the American Chemical Society.

[43]  L Wang,et al.  Peptoids: a modular approach to drug discovery. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[44]  D. Seebach,et al.  Cellular Uptake Studies with β‐Peptides , 2002 .

[45]  S. Gellman,et al.  Cytoplasmic and Nuclear Delivery of a TAT-derived Peptide and a β-Peptide after Endocytic Uptake into HeLa Cells* , 2003, Journal of Biological Chemistry.

[46]  Daniel Sergile,et al.  Split personality , 1998, SIGGRAPH '98.

[47]  T. Kodadek,et al.  Identification of a peptoid inhibitor of the proteasome 19S regulatory particle. , 2007, Journal of the American Chemical Society.

[48]  F. E. Weber,et al.  The uptake of cholesterol at the small‐intestinal brush border membrane is inhibited by apolipoproteins , 1997, FEBS letters.

[49]  Joshua A. Kritzer,et al.  Solution Structure of a β-Peptide Ligand for hDM2 , 2005 .

[50]  O. Schueler‐Furman,et al.  Progress in Modeling of Protein Structures and Interactions , 2005, Science.

[51]  M. Morris,et al.  Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics , 2009, British journal of pharmacology.

[52]  A. Barron,et al.  Simple, helical peptoid analogs of lung surfactant protein B. , 2005, Chemistry & biology.

[53]  Qiang Sui,et al.  Kinetics and equilibria of cis/trans isomerization of backbone amide bonds in peptoids. , 2007, Journal of the American Chemical Society.

[54]  Richard Bonneau,et al.  Oligo(N-aryl glycines): a new twist on structured peptoids. , 2008, Journal of the American Chemical Society.

[55]  M. Zasloff Antimicrobial peptides of multicellular organisms , 2002, Nature.

[56]  S. Gellman,et al.  Targeting protein-protein interactions: lessons from p53/MDM2. , 2007, Biopolymers.

[57]  D M Crothers,et al.  Fragments of the HIV-1 Tat protein specifically bind TAR RNA. , 1990, Science.

[58]  R. Sauer,et al.  Transcription factors: structural families and principles of DNA recognition. , 1992, Annual review of biochemistry.

[59]  A. Barron,et al.  Helical peptoid mimics of magainin-2 amide. , 2003, Journal of the American Chemical Society.

[60]  Alanna Schepartz,et al.  Toward β-Amino Acid Proteins: A Cooperatively Folded β-Peptide Quaternary Structure , 2006 .

[61]  H. Blackwell,et al.  New strategies for the design of folded peptoids revealed by a survey of noncovalent interactions in model systems. , 2009, Journal of the American Chemical Society.

[62]  S. Gellman,et al.  Antimicrobial 14-helical beta-peptides: potent bilayer disrupting agents. , 2004, Biochemistry.

[63]  Stephen B. H. Kent,et al.  Efficient method for the preparation of peptoids [oligo(N-substituted glycines)] by submonomer solid-phase synthesis , 1992 .

[64]  K A Dill,et al.  NMR determination of the major solution conformation of a peptoid pentamer with chiral side chains. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[65]  A. Levine,et al.  Structure of the MDM2 Oncoprotein Bound to the p53 Tumor Suppressor Transactivation Domain , 1996, Science.

[66]  S. Gellman,et al.  Role of membrane lipids in the mechanism of bacterial species selective toxicity by two alpha/beta-antimicrobial peptides. , 2006, Biochimica et biophysica acta.

[67]  S. Gellman,et al.  Interplay among folding, sequence, and lipophilicity in the antibacterial and hemolytic activities of alpha/beta-peptides. , 2007, Journal of the American Chemical Society.

[68]  Wannian Zhang,et al.  New lead structures in antifungal drug discovery. , 2011, Current medicinal chemistry.

[69]  Alanna Schepartz,et al.  Toward beta-amino acid proteins: a cooperatively folded beta-peptide quaternary structure. , 2006, Journal of the American Chemical Society.

[70]  Douglas R. Powell,et al.  Residue-based control of helix shape in β-peptide oligomers , 1997, Nature.

[71]  Thomas Kodadek,et al.  Isolation of protein ligands from large peptoid libraries. , 2003, Journal of the American Chemical Society.

[72]  T. Rana,et al.  Selective binding of TAR RNA by a Tat-derived beta-peptide. , 2003, Organic letters.

[73]  Ilia A Guzei,et al.  Extraordinarily robust polyproline type I peptoid helices generated via the incorporation of α-chiral aromatic N-1-naphthylethyl side chains. , 2011, Journal of the American Chemical Society.

[74]  Ronald T. Raines,et al.  Translocation of a beta-peptide across cell membranes. , 2002, Journal of the American Chemical Society.

[75]  Joshua A. Kritzer,et al.  Helical β-Peptide Inhibitors of the p53-hDM2 Interaction , 2004 .

[76]  S. Gellman,et al.  Interactions of the antimicrobial beta-peptide beta-17 with phospholipid vesicles differ from membrane interactions of magainins. , 2003, European journal of biochemistry.

[77]  O. Zerbe,et al.  Surprisingly stable helical conformations in alpha/beta-peptides by incorporation of cis-beta-aminocyclopropane carboxylic acids. , 2004, Angewandte Chemie.

[78]  Elizabeth A. Harker,et al.  In Silico Improvement of beta3-peptide inhibitors of p53 x hDM2 and p53 x hDMX. , 2009, Journal of the American Chemical Society.

[79]  P. Harbury,et al.  Synthetic ligands discovered by in vitro selection. , 2007, Journal of the American Chemical Society.

[80]  N. Ferrara,et al.  The biology of VEGF and its receptors , 2003, Nature Medicine.

[81]  E Ruoslahti,et al.  Integrin signaling. , 1999, Science.

[82]  S. Gellman,et al.  Exploration of Backbone Space in Foldamers Containing α‐ and β‐Amino Acid Residues: Developing Protease‐Resistant Oligomers that Bind Tightly to the BH3‐Recognition Cleft of Bcl‐xL , 2007, Chembiochem : a European journal of chemical biology.

[83]  Sean P. Palecek,et al.  Antifungal activity from 14-helical beta-peptides. , 2006, Journal of the American Chemical Society.

[84]  Samuel H. Gellman Foldamers: A Manifesto , 1998 .

[85]  Alanna Schepartz,et al.  High-resolution structure of a beta-peptide bundle. , 2007, Journal of the American Chemical Society.

[86]  A. Barron,et al.  Effects of hydrophobic helix length and side chain chemistry on biomimicry in peptoid analogues of SP-C. , 2008, Biochemistry.

[87]  S. Cory,et al.  The Bcl-2 apoptotic switch in cancer development and therapy , 2007, Oncogene.

[88]  S. Gellman,et al.  Inhibition of Herpes Simplex Virus Type 1 Infection by Cationic β-Peptides , 2008, Antimicrobial Agents and Chemotherapy.

[89]  P. Hansen,et al.  Antimicrobial Activities of Twenty Lysine-Peptoid Hybrids against Clinically Relevant Bacteria and Fungi , 2008, Chemotherapy.

[90]  T. Compton,et al.  Coiled-Coil Domains in Glycoproteins B and H Are Involved in Human Cytomegalovirus Membrane Fusion , 2004, Journal of Virology.

[91]  B. Jaun,et al.  Probing the Helical Secondary Structure of Short-Chain β-Peptides. , 1997 .

[92]  D. Hoyer,et al.  β2/β3-di- and α/β3-tetrapeptide derivatives as potent agonists at somatostatin sst4 receptors , 2003, Naunyn-Schmiedeberg's Archives of Pharmacology.

[93]  S. Gellman,et al.  Interplay among Folding, Sequence, and Lipophilicity in the Antibacterial and Hemolytic Activities of α/β-Peptides , 2007 .

[94]  W Seth Horne,et al.  Helix bundle quaternary structure from alpha/beta-peptide foldamers. , 2007, Journal of the American Chemical Society.

[95]  T. Kodadek,et al.  Periodate-triggered cross-linking reveals Sug2/Rpt4 as the molecular target of a peptoid inhibitor of the 19S proteasome regulatory particle. , 2007, Journal of the American Chemical Society.

[96]  W. D. Fairlie,et al.  (alpha/beta+alpha)-peptide antagonists of BH3 domain/Bcl-x(L) recognition: toward general strategies for foldamer-based inhibition of protein-protein interactions. , 2007, Journal of the American Chemical Society.

[97]  Arjel D. Bautista,et al.  Bridged beta(3)-peptide inhibitors of p53-hDM2 complexation: correlation between affinity and cell permeability. , 2010, Journal of the American Chemical Society.

[98]  Sean P. Palecek,et al.  Effect of sequence and structural properties on 14-helical beta-peptide activity against Candida albicans planktonic cells and biofilms. , 2009, ACS chemical biology.

[99]  S. Harrison,et al.  Atomic structure of the ectodomain from HIV-1 gp41 , 1997, Nature.

[100]  David E. Golan,et al.  Protein therapeutics: a summary and pharmacological classification , 2008, Nature Reviews Drug Discovery.

[101]  W. S. Horne,et al.  Hairpin folding behavior of mixed α/β-peptides in aqueous solution. , 2011, Journal of the American Chemical Society.

[102]  R. Laine,et al.  In vitro cytocidal effect of novel lytic peptides on Plasmodium falciparum and Trypanosoma cruzi 1 , 1988, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[103]  S. Gellman,et al.  Effects of conformational stability and geometry of guanidinium display on cell entry by beta-peptides. , 2005, Journal of the American Chemical Society.

[104]  Lloyd M. Smith,et al.  Exploration of structure--activity relationships among foldamer ligands for a specific protein binding site via parallel and split-and-mix library synthesis. , 2008, Journal of combinatorial chemistry.

[105]  W. DeGrado,et al.  beta-Peptides: from structure to function. , 2001, Chemical reviews.

[106]  D. Seebach,et al.  Antibiotic and Hemolytic Activity of a β2/β3 Peptide Capable of Folding into a 12/10‐Helical Secondary Structure , 2003 .

[107]  Arjel D. Bautista,et al.  Identification of a beta3-peptide HIV fusion inhibitor with improved potency in live cells. , 2009, Bioorganic & medicinal chemistry letters.

[108]  Richard Bonneau,et al.  A preliminary survey of the peptoid folding landscape. , 2009, Journal of the American Chemical Society.

[109]  Mark A. Scialdone,et al.  Antimicrobial β-peptoids by a block synthesis approach , 2006 .

[110]  S. Gellman,et al.  Bacterial species selective toxicity of two isomeric alpha/beta-peptides: role of membrane lipids. , 2005, Molecular membrane biology.

[111]  S. Gellman,et al.  Use of parallel synthesis to probe structure-activity relationships among 12-helical beta-peptides: evidence of a limit on antimicrobial activity. , 2005, Journal of the American Chemical Society.

[112]  Sean P. Palecek,et al.  Polyelectrolyte multilayers fabricated from antifungal β-peptides: design of surfaces that exhibit antifungal activity against Candida albicans. , 2010, Biomacromolecules.

[113]  S. A. Gallo,et al.  The HIV Env-mediated fusion reaction. , 2003, Biochimica et biophysica acta.

[114]  Min Lu,et al.  Structural and biological mimicry of protein surface recognition by α/β-peptide foldamers , 2009, Proceedings of the National Academy of Sciences.

[115]  S. Gellman,et al.  Mimicry of host-defense peptides by unnatural oligomers: antimicrobial beta-peptides. , 2002, Journal of the American Chemical Society.

[116]  S. Gellman,et al.  Antibiotics: Non-haemolytic β-amino-acid oligomers , 2000, Nature.

[117]  Samuel H. Gellman,et al.  Rational Development of β-Peptide Inhibitors of Human Cytomegalovirus Entry* , 2006, Journal of Biological Chemistry.

[118]  Karen H. Vousden,et al.  p53 in health and disease , 2007, Nature Reviews Molecular Cell Biology.

[119]  S. Gellman,et al.  HeLa Cell Entry by Guanidinium‐Rich β‐Peptides: Importance of Specific Cation–Cell Surface Interactions , 2007, Chembiochem : a European journal of chemical biology.

[120]  A. Barron,et al.  Peptoids that mimic the structure, function, and mechanism of helical antimicrobial peptides , 2008, Proceedings of the National Academy of Sciences.

[121]  M. Witt,et al.  a-Peptide/-Peptoid Chimeras , 2007 .

[122]  Alanna Schepartz,et al.  High-Resolution Structure of a β-Peptide Bundle , 2007 .

[123]  C. Foged,et al.  Cell-penetrating peptides for drug delivery across membrane barriers , 2008, Expert opinion on drug delivery.

[124]  Samuel H. Gellman,et al.  β-Peptide Foldamers: Robust Helix Formation in a New Family of β-Amino Acid Oligomers , 1996 .

[125]  K. Dill,et al.  Structural and spectroscopic studies of peptoid oligomers with alpha-chiral aliphatic side chains. , 2003, Journal of the American Chemical Society.

[126]  H. Bultmann,et al.  Peptides Containing Membrane-transiting Motifs Inhibit Virus Entry* , 2002, Journal of Biological Chemistry.

[127]  Christian Bruns,et al.  Opportunities in somatostatin research: biological, chemical and therapeutic aspects , 2003, Nature Reviews Drug Discovery.

[128]  B. Jaun,et al.  Pleated Sheets and Turns of β-Peptides with Proteinogenic Side Chains. , 1999, Angewandte Chemie.

[129]  D. Hoyer,et al.  Synthesis and Biological Evaluation of a Cyclo-β-tetrapeptide as a Somatostatin Analogue. , 1999, Angewandte Chemie.

[130]  H. Hauser,et al.  β‐Peptides as Inhibitors of Small‐Intestinal Cholesterol and Fat Absorption , 1999 .

[131]  Investigation of the Interactions of β‐Peptides with DNA Duplexes by Circular Dichroism Spectroscopy , 2006 .

[132]  Erinna F. Lee,et al.  High-resolution structural characterization of a helical alpha/beta-peptide foldamer bound to the anti-apoptotic protein Bcl-xL. , 2009, Angewandte Chemie.

[133]  P. Hansen,et al.  Novel lysine‐peptoid hybrids with antibacterial properties , 2005, Journal of peptide science : an official publication of the European Peptide Society.

[134]  Structural Basis of Bcl‐xL Recognition by a BH3‐Mimetic α/β‐Peptide Generated by Sequence‐Based Design , 2011, Chembiochem : a European journal of chemical biology.

[135]  R. Meadows,et al.  Structure of Bcl-xL-Bak Peptide Complex: Recognition Between Regulators of Apoptosis , 1997, Science.

[136]  B. Bray Large-scale manufacture of peptide therapeutics by chemical synthesis , 2003, Nature Reviews Drug Discovery.

[137]  Shaomeng Wang,et al.  Chimeric (alpha/beta + alpha)-peptide ligands for the BH3-recognition cleft of Bcl-XL: critical role of the molecular scaffold in protein surface recognition. , 2005, Journal of the American Chemical Society.

[138]  Angela M. Scates,et al.  Solid Phase Synthesis of -Peptoids: N-Substituted -Aminopropionic Acid Oligomers , 1998 .

[139]  Toshiaki Hara,et al.  Probing the structural requirements of peptoids that inhibit HDM2-p53 interactions. , 2006, Journal of the American Chemical Society.

[140]  S. Gellman,et al.  Unexpected Relationships between Structure and Function in α,β-Peptides: Antimicrobial Foldamers with Heterogeneous Backbones , 2004 .

[141]  K. Kirshenbaum,et al.  Peptoid architectures: elaboration, actuation, and application. , 2008, Current opinion in chemical biology.

[142]  Elizabeth A. Harker,et al.  Cell‐Permeable β‐Peptide Inhibitors of p53/hDM2 Complexation , 2009, Chembiochem : a European journal of chemical biology.

[143]  Ivan V. Korendovych,et al.  Computational design of a β-peptide that targets transmembrane helices. , 2011, Journal of the American Chemical Society.

[144]  Shaomeng Wang,et al.  Chimeric (α/β + α)-Peptide Ligands for the BH3-Recognition Cleft of Bcl-xL: Critical Role of the Molecular Scaffold in Protein Surface Recognition , 2005 .

[145]  Michael Greenberg,et al.  Enfuvirtide: the first therapy to inhibit the entry of HIV-1 into host CD4 lymphocytes , 2004, Nature Reviews Drug Discovery.

[146]  Byoung-Chul Lee,et al.  Folding a nonbiological polymer into a compact multihelical structure. , 2005, Journal of the American Chemical Society.

[147]  H. M. Nielsen,et al.  Antimicrobial, Hemolytic, and Cytotoxic Activities of β‐Peptoid–Peptide Hybrid Oligomers: Improved Properties Compared to Natural AMPs , 2010, Chembiochem : a European journal of chemical biology.

[148]  W Seth Horne,et al.  Sequence-based design of alpha/beta-peptide foldamers that mimic BH3 domains. , 2008, Angewandte Chemie.

[149]  S. Gellman,et al.  Interplay among side chain sequence, backbone composition, and residue rigidification in polypeptide folding and assembly , 2008, Proceedings of the National Academy of Sciences.

[150]  Paramjit S Arora,et al.  Contemporary strategies for the stabilization of peptides in the alpha-helical conformation. , 2008, Current opinion in chemical biology.

[151]  W. DeGrado,et al.  De Novo Design, Synthesis, and Characterization of Antimicrobial β-Peptides , 2001 .

[152]  Matthew J. Mio,et al.  A Field Guide to Foldamers , 2002 .

[153]  Michelle R. Arkin,et al.  Small-molecule inhibitors of protein–protein interactions: progressing towards the dream , 2004, Nature Reviews Drug Discovery.