High‐resolution dynamic CE‐MRA of the thorax enabled by iterative TWIST reconstruction

To evaluate the clinical benefit of using a new iterative reconstruction technique fully integrated on a standard clinical scanner and reconstruction system using a TWIST acquisition for high‐resolution dynamic three‐dimensional contrast‐enhanced MR angiography (CE‐MRA).

[1]  Michael Elad,et al.  ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA , 2014, Magnetic resonance in medicine.

[2]  Peng Hu,et al.  Reducing view‐sharing using compressed sensing in time‐resolved contrast‐enhanced magnetic resonance angiography , 2015, Magnetic resonance in medicine.

[3]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[4]  Edgar Mueller,et al.  Dynamic cardiac MRI reconstruction with weighted redundant Haar wavelets , 2022 .

[5]  D. Hadizadeh,et al.  High temporal and high spatial resolution MR angiography (4D-MRA) , 2014, Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren.

[6]  R. Likert “Technique for the Measurement of Attitudes, A” , 2022, The SAGE Encyclopedia of Research Design.

[7]  Andreas K. Maier,et al.  Free-Breathing Whole-Heart Coronary MRA: Motion Compensation Integrated into 3D Cartesian Compressed Sensing Reconstruction , 2013, MICCAI.

[8]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[9]  Armando Manduca,et al.  Sparse‐CAPR: Highly accelerated 4D CE‐MRA with parallel imaging and nonconvex compressive sensing , 2011, Magnetic resonance in medicine.

[10]  Peter Boesiger,et al.  Compressed sensing in dynamic MRI , 2008, Magnetic resonance in medicine.

[11]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[12]  Michaela Schmidt,et al.  Highly undersampled contrast‐enhanced MRA with iterative reconstruction: Integration in a clinical setting , 2015, Magnetic resonance in medicine.

[13]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[14]  Vivek Muthurangu,et al.  Free breathing contrast-enhanced time-resolved magnetic resonance angiography in pediatric and adult congenital heart disease , 2015, Journal of Cardiovascular Magnetic Resonance.

[15]  Joachim Hornegger,et al.  Isotropic 3-D CINE Imaging with Sub-2 mm Resolution in a Single Breath-Hold , 2014 .

[16]  Qun Chen,et al.  Optimal k‐space sampling for dynamic contrast‐enhanced MRI with an application to MR renography , 2009, Magnetic resonance in medicine.

[17]  R Frayne,et al.  Time‐resolved contrast‐enhanced 3D MR angiography , 1996, Magnetic resonance in medicine.

[18]  James Sayre,et al.  High spatial and temporal resolution dynamic contrast-enhanced magnetic resonance angiography (CE-MRA) using compressed sensing with magnitude image subtraction , 2013, Journal of Cardiovascular Magnetic Resonance.

[19]  G. Laub,et al.  3D Time-Resolved MR Angiography (MRA) of the Carotid Arteries with Time-Resolved Imaging with Stochastic Trajectories: Comparison with 3D Contrast-Enhanced Bolus-Chase MRA and 3D Time-Of-Flight MRA , 2008, American Journal of Neuroradiology.

[20]  M. Lustig,et al.  Free‐breathing pediatric MRI with nonrigid motion correction and acceleration , 2015, Journal of magnetic resonance imaging : JMRI.

[21]  J Paul Finn,et al.  Time-resolved MR angiography in the evaluation of central thoracic venous occlusive disease. , 2009, AJR. American journal of roentgenology.