The image foresting transform: theory, algorithms, and applications

The image foresting transform (IFT) is a graph-based approach to the design of image processing operators based on connectivity. It naturally leads to correct and efficient implementations and to a better understanding of how different operators relate to each other. We give here a precise definition of the IFT, and a procedure to compute it-a generalization of Dijkstra's algorithm-with a proof of correctness. We also discuss implementation issues and illustrate the use of the IFT in a few applications.

[1]  Alexandre X. Falcão,et al.  Characterization of the human cortex in MR images through the image foresting transform , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[2]  William A. Barrett,et al.  Interactive Segmentation with Intelligent Scissors , 1998, Graph. Model. Image Process..

[3]  T. Lindvall ON A ROUTING PROBLEM , 2004, Probability in the Engineering and Informational Sciences.

[4]  Luciano da Fontoura Costa,et al.  A graph-based approach for multiscale shape analysis , 2004, Pattern Recognit..

[5]  Jayaram K. Udupa,et al.  A 3D generalization of user-steered live-wire segmentation , 2000, Medical Image Anal..

[6]  Piet W. Verbeek,et al.  An Efficient Uniform Cost Algorithm Applied to Distance Transforms , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Alberto Martelli,et al.  An application of heuristic search methods to edge and contour detection , 1976, CACM.

[8]  Jos B. T. M. Roerdink,et al.  The Watershed Transform: Definitions, Algorithms and Parallelization Strategies , 2000, Fundam. Informaticae.

[9]  Jayaram K. Udupa,et al.  An ultra-fast user-steered image segmentation paradigm: live wire on the fly , 2000, IEEE Transactions on Medical Imaging.

[10]  L. Costa,et al.  Shape description by image foresting transform , 2002, 2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628).

[11]  Darwin Klingman,et al.  Shortest path forest with topological ordering: An algorithm description in SDL , 1980 .

[12]  Mehryar Mohri,et al.  Semiring Frameworks and Algorithms for Shortest-Distance Problems , 2002, J. Autom. Lang. Comb..

[13]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[14]  Ugo Montanari,et al.  On the optimal detection of curves in noisy pictures , 1971, CACM.

[15]  Alberto Martelli,et al.  Edge detection using heuristic search methods , 1972, Comput. Graph. Image Process..

[16]  P. Danielsson Euclidean distance mapping , 1980 .

[17]  Alexandre X. Falcão,et al.  Fast Euclidean distance transform using a graph-search algorithm , 2000, Proceedings 13th Brazilian Symposium on Computer Graphics and Image Processing (Cat. No.PR00878).

[18]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Narsingh Deo,et al.  Shortest-path algorithms: Taxonomy and annotation , 1984, Networks.

[20]  Rolf Adams,et al.  Seeded Region Growing , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  J. Sethian Curvature and the evolution of fronts , 1985 .

[22]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[23]  A. X. Falcão,et al.  Projeto de operadores de processamento e analise de imagens baseados na transformada imagem-floresta , 2001 .

[24]  Alexandre X. Falcão,et al.  The Ordered Queue and the Optimality of the Watershed Approaches , 2000, ISMM.

[25]  Fernand Meyer,et al.  Topographic distance and watershed lines , 1994, Signal Process..

[26]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Jayaram K. Udupa,et al.  Fuzzy-connected 3D image segmentation at interactive speeds , 2000, Graph. Model..

[28]  Alan Frieze,et al.  Minimum Paths in Directed Graphs , 1977 .

[29]  Supun Samarasekera,et al.  Fuzzy Connectedness and Object Definition: Theory, Algorithms, and Applications in Image Segmentation , 1996, CVGIP Graph. Model. Image Process..

[30]  Calvin R. Maurer,et al.  A Linear Time Algorithm for Computing Exact Euclidean Distance Transforms of Binary Images in Arbitrary Dimensions , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Yazid M. Sharaiha,et al.  A graph-theoretic approach to distance transformations , 1994, Pattern Recognit. Lett..

[32]  Fernand Meyer,et al.  The levelings , 1998 .

[33]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[34]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[35]  Jayaram K. Udupa,et al.  Relative Fuzzy Connectedness among Multiple Objects: Theory, Algorithms, and Applications in Image Segmentation , 2001, Comput. Vis. Image Underst..

[36]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[37]  Alexandre X. Falcão,et al.  Design of connected operators using the image foresting transform , 2001, SPIE Medical Imaging.

[38]  Ingemar Ragnemalm Neighborhoods for distance transformations using ordered propagation , 1992, CVGIP Image Underst..

[39]  Gunilla Borgefors,et al.  Distance transformations in digital images , 1986, Comput. Vis. Graph. Image Process..

[40]  Alexandre X. Falcão,et al.  IFT-Watershed from gray-scale marker , 2002, Proceedings. XV Brazilian Symposium on Computer Graphics and Image Processing.

[41]  Jayaram K. Udupa,et al.  User-Steered Image Segmentation Paradigms: Live Wire and Live Lane , 1998, Graph. Model. Image Process..

[42]  VincentL. Morphological grayscale reconstruction in image analysis , 1993 .

[43]  Luciano da Fontoura Costa,et al.  Multiscale skeletons by image foresting transform and its application to neuromorphometry , 2002, Pattern Recognit..

[44]  Benoit M. Macq,et al.  Fast Euclidean Distance Transformation by Propagation Using Multiple Neighborhoods , 1999, Comput. Vis. Image Underst..

[45]  Alexandre X. Falcão,et al.  The iterative image foresting transform and its application to user-steered 3D segmentation , 2003, SPIE Medical Imaging.