Addition of cyclic angiotensin-(1-7) to angiotensin-converting enzyme inhibitor therapy has a positive add-on effect in experimental diabetic nephropathy.

[1]  G. Moll,et al.  Efficacy of lanthionine-stabilized angiotensin-(1-7) in type I and type II diabetes mouse models , 2019, Peptides.

[2]  A. Teixeira,et al.  The Anti-Inflammatory Potential of ACE2/Angiotensin-(1-7)/Mas Receptor Axis: Evidence from Basic and Clinical Research. , 2017, Current drug targets.

[3]  M. Nangaku,et al.  ACE2 as therapy for glomerular disease: the devil is in the detail. , 2017, Kidney international.

[4]  D. Batlle,et al.  Angiotensin-converting enzyme 2 amplification limited to the circulation does not protect mice from development of diabetic nephropathy. , 2017, Kidney international.

[5]  P. Dagnelie,et al.  Capillary Rarefaction Associates with Albuminuria: The Maastricht Study. , 2016, Journal of the American Society of Nephrology : JASN.

[6]  G. Remuzzi,et al.  Therapy with a Selective Cannabinoid Receptor Type 2 Agonist Limits Albuminuria and Renal Injury in Mice with Type 2 Diabetic Nephropathy , 2015, Nephron.

[7]  Shao-Ling Zhang,et al.  Angiotensin-(1-7): A Novel Peptide to Treat Hypertension and Nephropathy in Diabetes? , 2015, Journal of diabetes & metabolism.

[8]  J. Ingelfinger,et al.  Angiotensin-(1-7) prevents systemic hypertension, attenuates oxidative stress and tubulointerstitial fibrosis, and normalizes renal angiotensin-converting enzyme 2 and Mas receptor expression in diabetic mice. , 2015, Clinical science.

[9]  H. Parving,et al.  Diabetic nephropathy in 2014: Improved cardiorenal prognosis in diabetic nephropathy , 2015, Nature Reviews Nephrology.

[10]  C. Zhang,et al.  Angiotensin(1–7) attenuates the progression of streptozotocin-induced diabetic renal injury better than angiotensin receptor blockade , 2014, Kidney international.

[11]  J. Scholey,et al.  Angiotensin 1-7 mediates renoprotection against diabetic nephropathy by reducing oxidative stress, inflammation, and lipotoxicity. , 2014, American journal of physiology. Renal physiology.

[12]  S. Santos,et al.  Oral administration of angiotensin-(1–7) ameliorates type 2 diabetes in rats , 2013, Journal of Molecular Medicine.

[13]  A. Advani,et al.  Endothelial-Podocyte Crosstalk: The Missing Link Between Endothelial Dysfunction and Albuminuria in Diabetes , 2013, Diabetes.

[14]  M. Teixeira,et al.  ACE2, angiotensin‐(1‐7) and Mas receptor axis in inflammation and fibrosis , 2013, British journal of pharmacology.

[15]  T. Eleftheriadis,et al.  The Renal Endothelium in Diabetic Nephropathy , 2013, Renal failure.

[16]  K. Connelly,et al.  eNOS deficiency predisposes podocytes to injury in diabetes. , 2012, Journal of the American Society of Nephrology : JASN.

[17]  S. Satchell The glomerular endothelium emerges as a key player in diabetic nephropathy. , 2012, Kidney international.

[18]  R. Nelson,et al.  Podocyte detachment and reduced glomerular capillary endothelial fenestration promote kidney disease in type 2 diabetic nephropathy , 2012, Kidney international.

[19]  D. Batlle,et al.  Podocyte-specific overexpression of human angiotensin-converting enzyme 2 attenuates diabetic nephropathy in mice , 2012, Kidney international.

[20]  D. Batlle,et al.  Angiotensin-converting enzyme 2: enhancing the degradation of angiotensin II as a potential therapy for diabetic nephropathy. , 2012, Kidney international.

[21]  G. Remuzzi,et al.  Both Darbepoetin Alfa and Carbamylated Erythropoietin Prevent Kidney Graft Dysfunction Due to Ischemia/Reperfusion in Rats , 2011, Transplantation.

[22]  Zhi-yong Ma,et al.  Angiotensin-Converting Enzyme (ACE) 2 Overexpression Ameliorates Glomerular Injury in a Rat Model of Diabetic Nephropathy: A Comparison with ACE Inhibition , 2011, Molecular medicine.

[23]  C. Alpers,et al.  BTBR Ob/Ob mutant mice model progressive diabetic nephropathy. , 2010, Journal of the American Society of Nephrology : JASN.

[24]  G. Remuzzi,et al.  The RAAS in the pathogenesis and treatment of diabetic nephropathy , 2010, Nature Reviews Nephrology.

[25]  R. Rink,et al.  Oral and pulmonary delivery of thioether-bridged angiotensin-(1–7) , 2010, Peptides.

[26]  T. Walther,et al.  Angiotensin-(1-7) with Thioether Bridge: An Angiotensin-Converting Enzyme-Resistant, Potent Angiotensin-(1-7) Analog , 2009, Journal of Pharmacology and Experimental Therapeutics.

[27]  R. Korstanje,et al.  The emerging role of ACE2 in physiology and disease† , 2007, The Journal of pathology.

[28]  G. Remuzzi,et al.  Prevention and treatment of diabetic renal disease in type 2 diabetes: the BENEDICT study. , 2006, Journal of the American Society of Nephrology : JASN.

[29]  David Andreu,et al.  The effect of cyclization on the enzymatic degradation of herpes simplex virus glycoprotein D derived epitope peptide , 2005, Journal of peptide science : an official publication of the European Peptide Society.

[30]  M. Ziman,et al.  Nestin structure and predicted function in cellular cytoskeletal organisation. , 2005, Histology and histopathology.

[31]  G. Remuzzi,et al.  Preventing microalbuminuria in type 2 diabetes. , 2004, The New England journal of medicine.

[32]  C. Svensson,et al.  Synthesis and biological activities of cyclic lanthionine enkephalin analogues : δ-opioid receptor selective ligands , 2002 .

[33]  Giuseppe Remuzzi,et al.  Nephropathy in Patients with Type 2 Diabetes , 2002 .

[34]  Nigel M. Hooper,et al.  A Human Homolog of Angiotensin-converting Enzyme , 2000, The Journal of Biological Chemistry.

[35]  K. Robison,et al.  A Novel Angiotensin-Converting Enzyme–Related Carboxypeptidase (ACE2) Converts Angiotensin I to Angiotensin 1-9 , 2000, Circulation research.

[36]  D. Ganten,et al.  Converting enzyme determines plasma clearance of angiotensin-(1-7). , 1998, Hypertension.

[37]  G. Remuzzi,et al.  Effects of angiotensin-converting enzyme inhibition on glomerular capillary wall ultrastructure in MWF/Ztm rats. , 1994, Journal of the American Society of Nephrology : JASN.

[38]  N. Perico,et al.  Evidence that an angiotensin-converting enzyme inhibitor has a different effect on glomerular injury according to the different phase of the disease at which the treatment is started. , 1994, Journal of the American Society of Nephrology : JASN.