Are dendrites in Drosophila homologous to vertebrate dendrites?

Dendrites represent arborising neurites in both vertebrates and invertebrates. However, in vertebrates, dendrites develop on neuronal cell bodies, whereas in higher invertebrates, they arise from very different neuronal structures, the primary neurites, which also form the axons. Is this anatomical difference paralleled by principal developmental and/or physiological differences? We address this question by focussing on one cellular model, motorneurons of Drosophila and characterise the compartmentalisation of these cells. We find that motorneuronal dendrites of Drosophila share with typical vertebrate dendrites that they lack presynaptic but harbour postsynaptic proteins, display calcium elevation upon excitation, have distinct cytoskeletal features, develop later than axons and are preceded by restricted localisation of Par6-complex proteins. Furthermore, we demonstrate in situ and culture that Drosophila dendrites can be shifted from the primary neurite to their soma, i.e. into vertebrate-like positions. Integrating these different lines of argumentation, we propose that dendrites in vertebrates and higher invertebrates have a common origin, and differences in dendrite location can be explained through translocation of neuronal cell bodies introduced during the evolutionary process by which arthropods and vertebrates diverged from a common urbilaterian ancestor. Implications of these findings for studies of dendrite development, neuronal polarity, transport and evolution are discussed.

[1]  C. Rickert,et al.  The embryonic central nervous system lineages of Drosophila melanogaster. II. Neuroblast lineages derived from the dorsal part of the neuroectoderm. , 1996, Developmental biology.

[2]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[3]  A. Matus,et al.  Actin-based plasticity in dendritic spines. , 2000, Science.

[4]  H. Cline,et al.  Rho GTPases regulate distinct aspects of dendritic arbor growth in Xenopus central neurons in vivo , 2000, Nature Neuroscience.

[5]  Y. Jan,et al.  Hippocampal Neuronal Polarity Specified by Spatially Localized mPar3/mPar6 and PI 3-Kinase Activity , 2003, Cell.

[6]  A. Ghysen,et al.  The origin and evolution of the nervous system. , 2003, The International journal of developmental biology.

[7]  A. Fiala,et al.  Genetically Expressed Cameleon in Drosophila melanogaster Is Used to Visualize Olfactory Information in Projection Neurons , 2002, Current Biology.

[8]  Andrew Tomlinson,et al.  A LIM-homeodomain combinatorial code for motor-neuron pathway selection , 1999, Nature.

[9]  Inhibition of a Mitotic Motor Compromises the Formation of Dendrite-like Processes from Neuroblastoma Cells , 1997, The Journal of cell biology.

[10]  C. Rickert,et al.  The Embryonic Central Nervous System Lineages ofDrosophila melanogaster , 1996 .

[11]  L. Cooley,et al.  Drosophila Kelch regulates actin organization via Src64-dependent tyrosine phosphorylation , 2002, The Journal of cell biology.

[12]  Ethan K. Scott,et al.  A mosaic genetic screen for genes necessary for Drosophila mushroom body neuronal morphogenesis , 2003, Development.

[13]  M. Setou,et al.  Axonal transport versus dendritic transport. , 2004, Journal of neurobiology.

[14]  Haigen Huang,et al.  Stimulation of erythropoiesis by inhibiting a new hematopoietic death receptor in transgenic zebrafish , 2000, Nature Cell Biology.

[15]  M. Fujioka,et al.  Analysis of an even-skipped rescue transgene reveals both composite and discrete neuronal and early blastoderm enhancers, and multi-stripe positioning by gap gene repressor gradients. , 1999, Development.

[16]  T. Pawson,et al.  A mammalian PAR-3–PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity , 2000, Nature Cell Biology.

[17]  Johannes J. Letzkus,et al.  A new culturing strategy optimises Drosophila primary cell cultures for structural and functional analyses. , 2004, Developmental biology.

[18]  L. Luo,et al.  Essential Roles of Drosophila RhoA in the Regulation of Neuroblast Proliferation and Dendritic but Not Axonal Morphogenesis , 2000, Neuron.

[19]  A. Prokop,et al.  Integrating bits and pieces: synapse structure and formation in Drosophila embryos , 1999, Cell and Tissue Research.

[20]  Liqun Luo,et al.  Diverse Functions of N-Cadherin in Dendritic and Axonal Terminal Arborization of Olfactory Projection Neurons , 2004, Neuron.

[21]  J. B. Duffy,et al.  GAL4 system in drosophila: A fly geneticist's swiss army knife , 2002, Genesis.

[22]  V. Hartenstein Development of Drosophila larval sensory organs: spatiotemporal pattern of sensory neurones, peripheral axonal pathways and sensilla differentiation , 1988 .

[23]  A Miyawaki,et al.  Dynamic and quantitative Ca2+ measurements using improved cameleons. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[24]  S. Benzer,et al.  Monoclonal antibodies against the Drosophila nervous system. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[25]  T. Godenschwege,et al.  Invertebrate Synapsins: A Single Gene Codes for Several Isoforms in Drosophila , 1996, The Journal of Neuroscience.

[26]  C. Leibold,et al.  Transgenic flies expressing the fluorescence calcium sensor cameleon 2.1 under UAS control , 2002, Genesis.

[27]  P. Baas,et al.  Expression of a Kinesin-Related Motor Protein Induces Sf9 Cells to Form Dendrite-Like Processes with Nonuniform Microtubule Polarity Orientation , 1996, The Journal of Neuroscience.

[28]  G. Horridge,et al.  Structure and function in the nervous systems of invertebrates , 1965 .

[29]  S. G. Robinson,et al.  Postsynaptic expression of tetanus toxin light chain blocks synaptogenesis in Drosophila , 1999, Current Biology.

[30]  M. Bate,et al.  Regulation of Synaptic Connectivity: Levels of Fasciclin II Influence Synaptic Growth in the Drosophila CNS , 2002, The Journal of Neuroscience.

[31]  Lily Yeh Jan,et al.  The Control of Dendrite Development , 2003, Neuron.

[32]  V. Tennyson The Fine Structure of the Nervous System. , 1970 .

[33]  Wolfgang Rössler,et al.  F‐actin at identified synapses in the mushroom body neuropil of the insect brain , 2004, The Journal of comparative neurology.

[34]  Richard D. Fetter,et al.  wishful thinking Encodes a BMP Type II Receptor that Regulates Synaptic Growth in Drosophila , 2002, Neuron.

[35]  M. Bastiani,et al.  From grasshopper to Drosophila: a common plan for neuronal development , 1984, Nature.

[36]  Y. Jan,et al.  Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. , 1994, Genes & development.

[37]  M. Bate,et al.  Embryonic Origins of a Motor System:Motor Dendrites Form a Myotopic Mapin Drosophila , 2003, PLoS biology.

[38]  N. Strausfeld Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.

[39]  E. Knust,et al.  Control of spindle orientation in Drosophila by the Par-3-related PDZ-domain protein Bazooka , 1998, Current Biology.

[40]  G. Davis,et al.  Drosophila Futsch/22C10 Is a MAP1B-like Protein Required for Dendritic and Axonal Development , 2000, Neuron.

[41]  D. Hartley Cellular interactions in development : a practical approach , 1993 .

[42]  T. Schwarz,et al.  Synaptotagmins I and IV promote transmitter release independently of Ca2+ binding in the C2A domain , 2002, Nature.

[43]  A. Borst,et al.  Dendritic integration and its role in computing image velocity. , 1998, Science.

[44]  Bo Guan,et al.  Regulation of Synapse Structure and Function by the Drosophila Tumor Suppressor Gene dlg , 1996, Neuron.

[45]  Liqun Luo,et al.  Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis , 1999, Neuron.

[46]  Ulrich Thomas,et al.  Mutation of Drosophila homer Disrupts Control of Locomotor Activity and Behavioral Plasticity , 2002, The Journal of Neuroscience.

[47]  C. Goodman,et al.  Genes that control neuromuscular specificity in Drosophila , 1993, Cell.

[48]  K. Hausen,et al.  The synaptic organization of visual interneurons in the lobula complex of flies , 1980, Cell and Tissue Research.

[49]  Seungbok Lee,et al.  Short Stop provides an essential link between F-actin and microtubules during axon extension. , 2002, Development.

[50]  M. Stengl,et al.  Insect olfactory neurons in vitro: morphological and immunocytochemical characterization of male-specific antennal receptor cells from developing antennae of male Manduca sexta , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  K. Mechtler,et al.  The Par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lgl , 2003, Nature.

[52]  Liqun Luo,et al.  Dendritic development of Drosophila high order visual system neurons is independent of sensory experience , 2003, BMC Neuroscience.

[53]  D. Arendt,et al.  Is ventral in insects dorsal in vertebrates? , 1994, Roux's archives of developmental biology.

[54]  T. Godenschwege,et al.  Compartmentalization of Central Neurons inDrosophila: A New Strategy of Mosaic Analysis Reveals Localization of Presynaptic Sites to Specific Segments of Neurites , 2002, The Journal of Neuroscience.

[55]  C. Doe,et al.  Par-6 and aPKC are not required for axon or dendrite specification in Drosophila , 2004 .

[56]  M. Bate,et al.  The kakapo Mutation Affects Terminal Arborization and Central Dendritic Sprouting of Drosophila Motorneurons , 1998, The Journal of cell biology.

[57]  L. Luo,et al.  Drosophila Lis1 is required for neuroblast proliferation, dendritic elaboration and axonal transport , 2000, Nature Cell Biology.

[58]  P. Baas,et al.  Slow axonal transport and the genesis of neuronal morphology. , 2004, Journal of neurobiology.

[59]  A. Spradling,et al.  The fusome organizes the microtubule network during oocyte differentiation in Drosophila. , 2000, Development.

[60]  G. Rubin,et al.  Transposition of cloned P elements into Drosophila germ line chromosomes. , 1982, Science.

[61]  N. Spruston,et al.  Diversity and dynamics of dendritic signaling. , 2000, Science.

[62]  A. Chiba,et al.  Robo and Frazzled/DCC mediate dendritic guidance at the CNS midline , 2003, Nature Neuroscience.

[63]  J. Adelman,et al.  ChIPping away at potassium channel regulation , 2000, Nature Neuroscience.

[64]  G. Feng,et al.  PSD93 Regulates Synaptic Stability at Neuronal Cholinergic Synapses , 2004, The Journal of Neuroscience.

[65]  Prof. Dr. José A. Campos-Ortega,et al.  The Embryonic Development of Drosophila melanogaster , 1997, Springer Berlin Heidelberg.

[66]  Carsten Duch,et al.  Activity Affects Dendritic Shape and Synapse Elimination during Steroid Controlled Dendritic Retraction in Manduca sexta , 2004, The Journal of Neuroscience.

[67]  R. Malenka,et al.  β-catenin is critical for dendritic morphogenesis , 2003, Nature Neuroscience.

[68]  H. Gras,et al.  Types, numbers and distribution of synapses on the dendritic tree of an identified visual interneuron in the brain of the locust , 1999, Cell and Tissue Research.

[69]  Rafael Yuste,et al.  Genesis of dendritic spines: insights from ultrastructural and imaging studies , 2004, Nature Reviews Neuroscience.

[70]  J. Knoblich,et al.  DmPAR-6 directs epithelial polarity and asymmetric cell division of neuroblasts in Drosophila , 2000, Nature Cell Biology.

[71]  E. Kurstak,et al.  Invertebrate systems in vitro , 1980 .

[72]  G. Banker,et al.  Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[73]  V. Teruel,et al.  Organization of the anterior dorsal ventricular ridge of the lizardPodarcis hispanica: cytoarchitecture and GABA-immunohistochemistry , 1991, Brain Research.

[74]  T. Jessell,et al.  Topographic organization of embryonic motor neurons defined by expression of LIM homeobox genes , 1994, Cell.

[75]  Matthias Landgraf,et al.  Charting the Drosophila neuropile: a strategy for the standardised characterisation of genetically amenable neurites. , 2003, Developmental biology.

[76]  D. Bray,et al.  Mechanical tension produced by nerve cells in tissue culture. , 1979, Journal of cell science.

[77]  M. Heisenberg,et al.  Flies lacking all synapsins are unexpectedly healthy but are impaired in complex behaviour , 2004, The European journal of neuroscience.

[78]  M. Burrows The Neurobiology of an Insect Brain , 1996 .

[79]  Y. Jan,et al.  Reciprocal localization of Nod and kinesin fusion proteins indicates microtubule polarity in the Drosophila oocyte, epithelium, neuron and muscle. , 1997, Development.

[80]  C. A. G. Wiersma,et al.  Invertebrate nervous systems : their significance for mammalian neurophysiology , 1967 .

[81]  R. Ward,et al.  Centrifugal visual system of Crocodylus niloticus: A hodological, histochemical, and immunocytochemical study , 2004, The Journal of comparative neurology.

[82]  R. Kelly,et al.  Traffic of Dynamin within Individual DrosophilaSynaptic Boutons Relative to Compartment-Specific Markers , 1996, The Journal of Neuroscience.

[83]  S. D. Carlson,et al.  Ultrastructure and blood–nerve barrier of chordotonal organs in the Drosophila embryo , 1997, Journal of neurocytology.

[84]  Julie H. Simpson,et al.  Ectopic Expression in the Giant Fiber System ofDrosophila Reveals Distinct Roles for Roundabout (Robo), Robo2, and Robo3 in Dendritic Guidance and Synaptic Connectivity , 2002, The Journal of Neuroscience.

[85]  Y. Jan,et al.  Antibodies to horseradish peroxidase as specific neuronal markers in Drosophila and in grasshopper embryos. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[86]  K. Broadie,et al.  Cellular bases of behavioral plasticity: establishing and modifying synaptic circuits in the Drosophila genetic system. , 2003, Journal of neurobiology.

[87]  M. Suster,et al.  Targeted expression of tetanus toxin reveals sets of neurons involved in larval locomotion in Drosophila. , 2003, Journal of neurobiology.

[88]  Liqun Luo,et al.  Small GTPase Cdc42 Is Required for Multiple Aspects of Dendritic Morphogenesis , 2003, The Journal of Neuroscience.

[89]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[90]  W M Cowan,et al.  Further observations on hippocampal neurons in dispersed cell culture , 1979, The Journal of comparative neurology.

[91]  K. Bhat Cell-cell signaling during neurogenesis: some answers and many questions. , 1998, The International journal of developmental biology.