Perbandingan teori model binari (comparisons of theoritical binary models)

Tujuan kertas ini ialah untuk membincangkan teori bagi model logit, model probit dan model kebarangkalian linear. Perbandingan model dari segi penganggaran parameter $\beta_k$ dilakukan dengan menggunakan kaedah kebolehjadian maksimum dan kaedah kuasadua terkecil berpemberat. Beberapa perbandingan ujian lain ditunjukkan seperti multikolineariti, ujian reja, pengujian hipotesis, kebagusan penyuaian dan diagnosis data berpengaruh serta data terpencil.

[1]  John H. Aldrich,et al.  Linear probability, logit and probit models , 1984 .

[2]  Eric R. Ziegel,et al.  An Introduction to Generalized Linear Models , 2002, Technometrics.

[3]  S. Weisberg Applied Linear Regression, 2nd Edition. , 1987 .

[4]  Matthias Schroder,et al.  Logistic Regression: A Self-Learning Text , 2003 .

[5]  J. Gaddum Probit Analysis , 1948, Nature.

[6]  Vic Barnett,et al.  Outliers in Statistical Data , 1980 .

[7]  T. Liao Interpreting Probability Models: Logit, Probit, and Other Generalized Linear Models , 1994 .

[8]  Byron J. T. Morgan Analysis of Quantal Response Data , 1992 .

[9]  John Hinde,et al.  Statistical Modelling in GLIM. , 1990 .

[10]  A. Agresti An introduction to categorical data analysis , 1997 .

[11]  M. G. Kendall,et al.  On the History of Statistics and Probability , 1976 .

[12]  Melvyn Weeks,et al.  The Statistical Relationship between Bivariate and Multinomial Choice Models , 1999 .

[13]  Richard C. Sprinthall Statistical Methods for the Social Sciences , 2008 .

[14]  Joel L. Horowitz,et al.  Binary Response Models: Logits, Probits and Semiparametrics , 2001 .

[15]  George A. F. Seber,et al.  Linear regression analysis , 1977 .

[16]  P. Schmidt,et al.  Limited-Dependent and Qualitative Variables in Econometrics. , 1984 .

[17]  Erling B. Andersen,et al.  Introduction to the Statistical Analysis of Categorical Data , 1997 .

[18]  Elizabeth A. Peck,et al.  Introduction to Linear Regression Analysis , 2001 .

[19]  J. Neter,et al.  Applied Linear Regression Models , 1983 .