A Numerical Study of Some Hessian Recovery Techniques on Isotropic and Anisotropic Meshes

Spaces of continuous piecewise linear finite elements are considered to solve a Poisson problem, and several numerical methods are investigated to recover second derivatives. Numerical results on 2D and 3D isotropic and anisotropic meshes indicate that the quality of the results is strongly linked to the mesh topology and that no convergence can be insured in general.

[1]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[2]  Simona Perotto,et al.  Anisotropic error estimates for elliptic problems , 2003, Numerische Mathematik.

[3]  Ningning Yan,et al.  Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes , 2001 .

[4]  Frédéric Alauzet,et al.  On the use of anisotropic a posteriori error estimators for the adaptative solution of 3D inviscid compressible flows , 2009 .

[5]  M. Fortin,et al.  Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part II. Structured grids , 2002 .

[6]  Michel Fortin,et al.  A fully optimal anisotropic mesh adaptation method based on a hierarchical error estimator , 2012 .

[7]  Pekka Neittaanmäki,et al.  Superconvergence phenomenon in the finite element method arising from averaging gradients , 1984 .

[8]  Houman Borouchaki,et al.  The BL2D Mesh Generator: Beginner's Guide, User's and Programmer's Manual , 1996 .

[9]  Simona Perotto,et al.  New anisotropic a priori error estimates , 2001, Numerische Mathematik.

[10]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[11]  Mary F. Wheeler,et al.  Superconvergent recovery of gradients on subdomains from piecewise linear finite-element approximations , 1987 .

[12]  Marco Picasso,et al.  An Anisotropic Error Indicator Based on Zienkiewicz-Zhu Error Estimator: Application to Elliptic and Parabolic Problems , 2002, SIAM J. Sci. Comput..

[13]  J. Dompierre,et al.  Numerical comparison of some Hessian recovery techniques , 2007 .

[14]  Nick Levine,et al.  Superconvergent Recovery of the Gradient from Piecewise Linear Finite-element Approximations , 1985 .

[15]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[16]  Zhimin Zhang,et al.  A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..

[17]  Bernd Hamann,et al.  Curvature Approximation for Triangulated Surfaces , 1993, Geometric Modelling.

[18]  Bharat K. Soni,et al.  Mesh Generation , 2020, Handbook of Computational Geometry.

[19]  Patrick Laug,et al.  BL2D-V2 : mailleur bidimensionnel adaptatif , 2003 .

[20]  Zhimin Zhang,et al.  A Posteriori Error Estimates Based on the Polynomial Preserving Recovery , 2004, SIAM J. Numer. Anal..

[21]  Zhimin Zhang,et al.  Analysis of recovery type a posteriori error estimators for mildly structured grids , 2003, Math. Comput..

[22]  Frédéric Alauzet High‐order methods and mesh adaptation for Euler equations , 2008 .

[23]  Pascal Frey,et al.  Anisotropic mesh adaptation for CFD computations , 2005 .

[24]  M. Picasso Numerical study of the effectivity index for an anisotropic error indicator based on Zienkiewicz–Zhu error estimator , 2002 .

[25]  R. Rodríguez Some remarks on Zienkiewicz‐Zhu estimator , 1994 .

[26]  M. Fortin,et al.  Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part I: general principles , 2000 .

[27]  Jean-François Remacle,et al.  Transient adaptivity applied to two-phase incompressible flows , 2008, J. Comput. Phys..

[28]  Plantage Muidergracht,et al.  Gradient superconvergence on uniform simplicial partitions of polytopes , 2003 .

[29]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[30]  Zhimin Zhang,et al.  Polynomial preserving recovery for meshes from Delaunay triangulation or with high aspect ratio , 2008 .

[31]  Cécile Dobrzynski,et al.  Adaptation de Maillage anisotrope 3D et application à l'aéro-thermique des bâtiments , 2005 .

[32]  Marco Picasso,et al.  Adaptive finite elements with large aspect ratio based on an anisotropic error estimator involving first order derivatives , 2006 .

[33]  Zhimin Zhang,et al.  Natural Superconvergence Points in Three-Dimensional Finite Elements , 2008, SIAM J. Numer. Anal..

[34]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[35]  M. Filipiak Mesh Generation , 2007 .

[36]  Frédéric Hecht,et al.  Anisotropic unstructured mesh adaption for flow simulations , 1997 .

[37]  Ivan Hlaváček,et al.  How to recover the gradient of linear elements on nonuniform triangulations , 1996 .