L regularity theory for even order elliptic systems with antisymmetric first order potentials
暂无分享,去创建一个
[1] Ronald A. DeVore,et al. Interpolation of linear operators on Sobolev spaces , 1979 .
[2] D. Adams. A note on Riesz potentials , 1975 .
[3] Gabriele Eisenhauer,et al. Multiple Integrals In The Calculus Of Variations And Nonlinear Elliptic Systems , 2016 .
[4] Lihe Wang,et al. A regularity theory of biharmonic maps , 1999 .
[5] Frédéric Hélein,et al. Harmonic Maps, Conservation Laws, And Moving Frames , 2002 .
[6] Melanie Rupflin. An improved uniqueness result for the harmonic map flow in two dimensions , 2008 .
[7] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[8] Richard O’Neil,et al. Convolution operators and $L(p,q)$ spaces , 1963 .
[9] Christoph Scheven,et al. Regularity of polyharmonic maps in the critical dimension , 2009 .
[10] E. Stein,et al. Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .
[11] G. Burton. Sobolev Spaces , 2013 .
[12] J. Eells,et al. Harmonic Mappings of Riemannian Manifolds , 1964 .
[13] T. Rivière. Conservation laws for conformally invariant variational problems , 2006, math/0603380.
[14] A. Gastel,et al. Conservation laws for even order systems of polyharmonic map type , 2019, Calculus of Variations and Partial Differential Equations.
[15] J. Sacks,et al. The Existence of Minimal Immersions of 2-Spheres , 1981 .
[16] Changyou Wang,et al. Boundary regularity for polyharmonic maps in the critical dimension , 2009 .
[17] Partial Regularity for Weak Heat Flows into a General Compact Riemannian Manifold , 2003 .
[18] R. Moser. An L p regularity theory for harmonic maps , 2014 .
[19] Regularity of weak solutions to higher order elliptic systems in critical dimensions , 2020, 2010.09149.
[20] P. Laurain,et al. Energy quantization for biharmonic maps , 2011, 1112.5393.
[21] A. Gastel. The extrinsic polyharmonic map heat flow in the critical dimension , 2006 .
[22] Chang-Lin Xiang,et al. Regularity of solutions for a fourth‐order elliptic system via Conservation law , 2019, Journal of the London Mathematical Society.
[23] Gao-Feng Zheng,et al. The Lamm–Rivière system I: $$L^p$$ regularity theory , 2020, Calculus of Variations and Partial Differential Equations.
[24] B. Sharp. Higher integrability for solutions to a system of critical elliptic PDE , 2011, 1112.1127.
[25] Changyou Wang,et al. Energy identity of approximate biharmonic maps to Riemannian manifolds and its application , 2011, 1112.6362.
[26] Changyou Wang. Well-posedness for the Heat Flow of Biharmonic Maps with Rough Initial Data , 2010, Journal of Geometric Analysis.
[27] Tobias Lamm,et al. Existence of expanders of the harmonic map flow , 2021, Annales scientifiques de l'École Normale Supérieure.
[28] T. Lamm,et al. Conservation Laws for Fourth Order Systems in Four Dimensions , 2006, math/0607484.
[29] Charles B. Morrey,et al. The Problem of Plateau on a Riemannian Manifold , 1948 .
[30] L. Tartar. Imbedding theorems of Sobolev spaces into Lorentz spaces , 1998 .
[31] T. Rivière. Conformally Invariant Variational Problems , 2012, 1206.2116.
[32] F. Lin,et al. Energy quantization for harmonic maps , 2002 .
[33] Pawel Strzelecki. On biharmonic maps and their generalizations , 2003 .
[34] R. Moser,et al. Energy identity for intrinsically biharmonic maps in four dimensions , 2012 .
[35] Anna Zatorska–Goldstein,et al. On polyharmonic maps into spheres in the critical dimension , 2009 .
[36] T. Lamm,et al. Global estimates and energy identities for elliptic systems with antisymmetric potentials , 2014, 1404.7709.
[37] Changyou Wang. Biharmonic maps from R4 into a Riemannian manifold , 2004 .
[38] Frédéric de Longueville. Regularität der Lösungen von Systeme (2m)-ter Ordnung vom polyharmonischen Typ in kritischer Dimension , 2018 .
[39] Changyou Wang,et al. Stationary biharmonic maps from Rm into a Riemannian manifold , 2004 .
[40] L. Grafakos. Classical Fourier Analysis , 2010 .
[41] Changyou Wang,et al. Regularity and uniqueness of a class of biharmonic map heat flows , 2014 .
[42] P. Laurain,et al. Angular Energy Quantization for Linear Elliptic Systems with Antisymmetric Potentials and Applications , 2011, 1109.3599.
[43] O. Scherzer,et al. Weakly Differentiable Functions , 2009 .
[44] On a nonlinear fourth order elliptic system with critical growth in first order derivatives , 2008 .
[45] Michael Struwe,et al. On the evolution of harmonic maps in higher dimensions , 1988 .
[46] T. Lamm. Biharmonic map heat flow into manifolds of nonpositive curvature , 2004 .
[47] P. Topping,et al. Decay estimates for Rivière’s equation, with applications to regularity and compactness , 2011, 1102.0713.
[48] 朴 俊植,et al. On harmonic maps , 1989 .