L regularity theory for even order elliptic systems with antisymmetric first order potentials

which includes polyharmonic mappings as special cases. Under minimal regularity assumptions on the coefficient functions and an additional algebraic antisymmetry assumption on the first order potential, they successfully established a conservation law for this system, from which everywhere continuity of weak solutions follows. This beautiful result amounts to a significant advance in the expectation of Rivière. In this paper, we seek for the optimal interior regularity of the above system, aiming at a more complete solution to the aforementioned expectation of Rivière. Combining their conservation law and some new ideas together, we obtain optimal Hölder continuity and sharp L regularity theory, similar to that of Sharp and Topping [40], for weak solutions to a related inhomogeneous system. Our results can be applied to study heat flow and bubbling analysis for polyharmonic mappings.

[1]  Ronald A. DeVore,et al.  Interpolation of linear operators on Sobolev spaces , 1979 .

[2]  D. Adams A note on Riesz potentials , 1975 .

[3]  Gabriele Eisenhauer,et al.  Multiple Integrals In The Calculus Of Variations And Nonlinear Elliptic Systems , 2016 .

[4]  Lihe Wang,et al.  A regularity theory of biharmonic maps , 1999 .

[5]  Frédéric Hélein,et al.  Harmonic Maps, Conservation Laws, And Moving Frames , 2002 .

[6]  Melanie Rupflin An improved uniqueness result for the harmonic map flow in two dimensions , 2008 .

[7]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[8]  Richard O’Neil,et al.  Convolution operators and $L(p,q)$ spaces , 1963 .

[9]  Christoph Scheven,et al.  Regularity of polyharmonic maps in the critical dimension , 2009 .

[10]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[11]  G. Burton Sobolev Spaces , 2013 .

[12]  J. Eells,et al.  Harmonic Mappings of Riemannian Manifolds , 1964 .

[13]  T. Rivière Conservation laws for conformally invariant variational problems , 2006, math/0603380.

[14]  A. Gastel,et al.  Conservation laws for even order systems of polyharmonic map type , 2019, Calculus of Variations and Partial Differential Equations.

[15]  J. Sacks,et al.  The Existence of Minimal Immersions of 2-Spheres , 1981 .

[16]  Changyou Wang,et al.  Boundary regularity for polyharmonic maps in the critical dimension , 2009 .

[17]  Partial Regularity for Weak Heat Flows into a General Compact Riemannian Manifold , 2003 .

[18]  R. Moser An L p regularity theory for harmonic maps , 2014 .

[19]  Regularity of weak solutions to higher order elliptic systems in critical dimensions , 2020, 2010.09149.

[20]  P. Laurain,et al.  Energy quantization for biharmonic maps , 2011, 1112.5393.

[21]  A. Gastel The extrinsic polyharmonic map heat flow in the critical dimension , 2006 .

[22]  Chang-Lin Xiang,et al.  Regularity of solutions for a fourth‐order elliptic system via Conservation law , 2019, Journal of the London Mathematical Society.

[23]  Gao-Feng Zheng,et al.  The Lamm–Rivière system I: $$L^p$$ regularity theory , 2020, Calculus of Variations and Partial Differential Equations.

[24]  B. Sharp Higher integrability for solutions to a system of critical elliptic PDE , 2011, 1112.1127.

[25]  Changyou Wang,et al.  Energy identity of approximate biharmonic maps to Riemannian manifolds and its application , 2011, 1112.6362.

[26]  Changyou Wang Well-posedness for the Heat Flow of Biharmonic Maps with Rough Initial Data , 2010, Journal of Geometric Analysis.

[27]  Tobias Lamm,et al.  Existence of expanders of the harmonic map flow , 2021, Annales scientifiques de l'École Normale Supérieure.

[28]  T. Lamm,et al.  Conservation Laws for Fourth Order Systems in Four Dimensions , 2006, math/0607484.

[29]  Charles B. Morrey,et al.  The Problem of Plateau on a Riemannian Manifold , 1948 .

[30]  L. Tartar Imbedding theorems of Sobolev spaces into Lorentz spaces , 1998 .

[31]  T. Rivière Conformally Invariant Variational Problems , 2012, 1206.2116.

[32]  F. Lin,et al.  Energy quantization for harmonic maps , 2002 .

[33]  Pawel Strzelecki On biharmonic maps and their generalizations , 2003 .

[34]  R. Moser,et al.  Energy identity for intrinsically biharmonic maps in four dimensions , 2012 .

[35]  Anna Zatorska–Goldstein,et al.  On polyharmonic maps into spheres in the critical dimension , 2009 .

[36]  T. Lamm,et al.  Global estimates and energy identities for elliptic systems with antisymmetric potentials , 2014, 1404.7709.

[37]  Changyou Wang Biharmonic maps from R4 into a Riemannian manifold , 2004 .

[38]  Frédéric de Longueville Regularität der Lösungen von Systeme (2m)-ter Ordnung vom polyharmonischen Typ in kritischer Dimension , 2018 .

[39]  Changyou Wang,et al.  Stationary biharmonic maps from Rm into a Riemannian manifold , 2004 .

[40]  L. Grafakos Classical Fourier Analysis , 2010 .

[41]  Changyou Wang,et al.  Regularity and uniqueness of a class of biharmonic map heat flows , 2014 .

[42]  P. Laurain,et al.  Angular Energy Quantization for Linear Elliptic Systems with Antisymmetric Potentials and Applications , 2011, 1109.3599.

[43]  O. Scherzer,et al.  Weakly Differentiable Functions , 2009 .

[44]  On a nonlinear fourth order elliptic system with critical growth in first order derivatives , 2008 .

[45]  Michael Struwe,et al.  On the evolution of harmonic maps in higher dimensions , 1988 .

[46]  T. Lamm Biharmonic map heat flow into manifolds of nonpositive curvature , 2004 .

[47]  P. Topping,et al.  Decay estimates for Rivière’s equation, with applications to regularity and compactness , 2011, 1102.0713.

[48]  朴 俊植,et al.  On harmonic maps , 1989 .