Three-Dimensional Wiring for Extensible Quantum Computing: The Quantum Socket
暂无分享,去创建一个
Austin G. Fowler | S. Royak | J. R. Rinehart | M. Mariantoni | J. H. Bejanin | T. G. McConkey | C. T. Earnest | Corey Rae McRae | Daryoush Shiri | J. D. Bateman | Y. Rohanizadegan | B. Penava | P. Breul | M. Zapatka | M. Mariantoni | A. Fowler | P. Breul | D. Shiri | C. McRae | T. McConkey | Jérémy H. Béjanin | Y. Rohanizadegan | J. Rinehart | J. D. Bateman | B. Penava | S. Royak | M. Zapatka
[1] O A Mukhanov,et al. Energy-Efficient Single Flux Quantum Technology , 2011, IEEE Transactions on Applied Superconductivity.
[2] Robert Raussendorf,et al. Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.
[3] John M. Martinis,et al. Qubit metrology for building a fault-tolerant quantum computer , 2015, npj Quantum Information.
[4] S. Poletto,et al. Detecting bit-flip errors in a logical qubit using stabilizer measurements , 2014, Nature Communications.
[5] R. Barends,et al. Coherent Josephson qubit suitable for scalable quantum integrated circuits. , 2013, Physical review letters.
[6] J. Martinis,et al. Microwave response of vortices in superconducting thin films of Re and Al , 2008, 0812.3645.
[7] P. Duthil,et al. Material Properties at Low Temperature , 2015, 1501.07100.
[8] M. Mariantoni,et al. Growth and characterization of epitaxial aluminum layers on gallium-arsenide substrates for superconducting quantum bits , 2016 .
[9] Pieter Kok,et al. Quantum computers: Definition and implementations , 2011 .
[10] John M. Martinis,et al. State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.
[11] E. K. Track,et al. Superconductor ICs: the 100-GHz second generation , 2000 .
[12] Michel Devoret,et al. Superconducting quantum bits , 2005 .
[13] M. Mariantoni,et al. Planck spectroscopy and quantum noise of microwave beam splitters. , 2010, Physical review letters.
[14] C. A. Swenson. Recommended Values for the Thermal Expansivity of Silicon from 0 to 1000 K , 1983 .
[15] L. Vandersypen,et al. Spins in few-electron quantum dots , 2006, cond-mat/0610433.
[16] G. Milburn,et al. Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.
[17] Adele E. Schmitz,et al. Coherent singlet-triplet oscillations in a silicon-based double quantum dot , 2012, Nature.
[18] Austin G. Fowler,et al. Quantifying the effects of local many-qubit errors and nonlocal two-qubit errors on the surface code , 2014 .
[19] E. Lucero,et al. Planar Superconducting Resonators with Internal Quality Factors above One Million , 2012, 1201.3384.
[20] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[21] M. Mariantoni,et al. Two-resonator circuit quantum electrodynamics : A superconducting quantum switch , 2007, 0712.2522.
[22] F. Pobell,et al. Superconducting aluminum heat switch and plated press-contacts for use at ultralow temperatures. , 1978, The Review of scientific instruments.
[23] Erik Lucero,et al. Wirebond crosstalk and cavity modes in large chip mounts for superconducting qubits , 2010, 1011.4982.
[24] R. Barends,et al. Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.
[25] Joe O'Gorman,et al. A silicon-based surface code quantum computer , 2014, npj Quantum Information.
[26] Enrique Solano,et al. Resonant quantum gates in circuit quantum electrodynamics , 2010 .
[27] C. Monroe,et al. Scaling the Ion Trap Quantum Processor , 2013, Science.
[28] D. Deutsch. Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[29] Ashley Montanaro,et al. Quantum algorithms: an overview , 2015, npj Quantum Information.
[30] R. J. Schoelkopf,et al. Multilayer microwave integrated quantum circuits for scalable quantum computing , 2015, npj Quantum Information.
[31] B. Plourde,et al. Reducing microwave loss in superconducting resonators due to trapped vortices , 2009, 0911.3131.
[32] M. Mariantoni,et al. Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.
[33] R. J. Schoelkopf,et al. Demonstration of superconducting micromachined cavities , 2015, 1509.01119.
[34] Erik Lucero,et al. Minimizing quasiparticle generation from stray infrared light in superconducting quantum circuits , 2011 .
[35] H. S. Allen. The Quantum Theory , 1928, Nature.
[36] Igor V. Vernik,et al. Modular, Multi-Function Digital-RF Receiver Systems , 2011, IEEE Transactions on Applied Superconductivity.
[37] Antonio Corcoles,et al. Protecting superconducting qubits from radiation , 2011 .
[38] R. Schoelkopf,et al. Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.
[39] Erik Lucero,et al. Implementing the Quantum von Neumann Architecture with Superconducting Circuits , 2011, Science.
[40] D. Gottesman. An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation , 2009, 0904.2557.
[41] A. Gossard,et al. Coherent operations and screening in multielectron spin qubits. , 2013, Physical review letters.
[42] Andrew W. Cross,et al. Demonstration of a quantum error detection code using a square lattice of four superconducting qubits , 2015, Nature Communications.
[43] A. Wallraff,et al. Fabrication and characterization of superconducting circuit QED devices for quantum computation , 2005, IEEE Transactions on Applied Superconductivity.
[44] D. DiVincenzo,et al. The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.
[45] Zijun Chen,et al. Strong environmental coupling in a Josephson parametric amplifier , 2014, 1401.3799.
[46] R. Simons. Coplanar waveguide circuits, components, and systems , 2001 .