ff ect of Thermal Annealing in Ammonia on the Properties of InGaN Nanowires with Di ff erent Indium Concentrations

The utility of an annealing procedure in ammonia ambient is investigated for improving the optical characteristics of InxGa1−xN nanowires (0.07 ≤ x ≤ 0.42) grown on c-Al2O3 using a halide chemical vapor deposition method. Morphological studies using scanning electron microscopy confirm that the nanowire morphology is retained after annealing in ammonia at temperatures up to 800 °C. However, significant indium etching and composition inhomogeneities are observed for higher indium composition nanowires (x = 0.28, 0.42), as measured by energydispersive X-ray spectroscopy and Z-contrast scanning transmission electron microscopy. Structural analyses, using X-ray diffraction and highresolution transmission electron microscopy, indicate that this is a result of the greater thermal instability of higher indium composition nanowires. The effect of these structural changes on the optical quality of InGaN nanowires is examined using steady-state and time-resolved photoluminescence measurements. Annealing in ammonia enhances the integrated photoluminescence intensity of InxGa1−xN nanowires by up to a factor of 4.11 ± 0.03 (for x = 0.42) by increasing the rate of radiative recombination. Fitting of photoluminescence decay curves to a Kohlrausch stretched exponential indicates that this increase is directly related to a larger distribution of recombination rates from composition inhomogeneities caused by annealing. The results demonstrate the role of thermal instability on the improved optical properties of InGaN nanowires annealed in ammonia.

[1]  P. Yang,et al.  Si/InGaN core/shell hierarchical nanowire arrays and their photoelectrochemical properties. , 2012, Nano letters.

[2]  P. Yang,et al.  High quantum efficiency of band-edge emission from ZnO nanowires. , 2011, Nano letters.

[3]  O. Brandt,et al.  Macro- and micro-strain in GaN nanowires on Si(111) , 2011, Nanotechnology.

[4]  Christopher Hahn,et al.  Epitaxial growth of InGaN nanowire arrays for light emitting diodes. , 2011, ACS nano.

[5]  Qimin Yan,et al.  Hybrid functional investigations of band gaps and band alignments for AlN, GaN, InN, and InGaN. , 2011, The Journal of chemical physics.

[6]  P. Bhattacharya,et al.  Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy. , 2010, Nano letters.

[7]  Wei Liu,et al.  The effects of cap layers on electrical properties of indium nitride films , 2010 .

[8]  Gerald B. Stringfellow,et al.  Microstructures produced during the epitaxial growth of InGaN alloys , 2010 .

[9]  Asif Khan Semiconductor photonics: Laser diodes go green , 2009 .

[10]  Junqiao Wu,et al.  When group-III nitrides go infrared: New properties and perspectives , 2009 .

[11]  Jingbo Li,et al.  Strain relaxation and band-gap tunability in ternary InxGa1-xN nanowires , 2008 .

[12]  Lauren E. S. Rohwer,et al.  Research challenges to ultra‐efficient inorganic solid‐state lighting , 2007 .

[13]  S. Aloni,et al.  Complete composition tunability of InGaN nanowires using a combinatorial approach. , 2007, Nature materials.

[14]  P. Dapkus,et al.  Correlating exciton localization with compositional fluctuations in InGaN∕GaN quantum wells grown on GaN planar surfaces and facets of GaN triangular prisms , 2007 .

[15]  Hadis Morkoç,et al.  Study of SiNx and SiO2 passivation of GaN surfaces , 2007 .

[16]  B. Valeur,et al.  Mathematical functions for the analysis of luminescence decays with underlying distributions 1. Kohlrausch decay function (stretched exponential) , 2005 .

[17]  G. Dalpian,et al.  Energetics and electronic structure of stacking faults in ZnO , 2004 .

[18]  M. Chergui,et al.  On the Excitation Wavelength Dependence of the Luminescence Yield of Colloidal CdSe Quantum Dots , 2004 .

[19]  Eugene E. Haller,et al.  Superior radiation resistance of In1-xGaxN alloys: Full-solar-spectrum photovoltaic material system , 2003 .

[20]  S. Feng,et al.  A microstructure study of post-growth thermally annealed InGaN/GaN quantum well structures of various well widths , 2003 .

[21]  M. Albrecht,et al.  Nitride Semiconductors: Handbook on Materials and Devices , 2003 .

[22]  I. Krestnikov,et al.  Quantum dot origin of luminescence in InGaN-GaN structures , 2002 .

[23]  R. Davis,et al.  Growth and decomposition of bulk GaN: role of the ammonia/nitrogen ratio , 2002 .

[24]  J. Gilman,et al.  Nanotechnology , 2001 .

[25]  Jen-Inn Chyi,et al.  Interdiffusion of In and Ga in InGaN/GaN multiple quantum wells , 2001 .

[26]  R. Molnar,et al.  Surface recombination and sulfide passivation of GaN , 2000 .

[27]  Hadis Morkoç,et al.  Mosaic growth of GaN on (0001) sapphire: A high-resolution electron microscopy and crystallographic study of threading dislocations from low-angle to high-angle grain boundaries , 2000 .

[28]  Jörg Neugebauer,et al.  Surface energetics, pit formation, and chemical ordering in InGaN alloys , 1999 .

[29]  F. H. Long,et al.  Time-Resolved Photoluminescence Measurements of InGaN Light-Emitting Diodes , 1998 .

[30]  Adatom diffusion at GaN (0001) and (0001̄) surfaces , 1998, cond-mat/9809006.

[31]  Chris G. Van de Walle,et al.  ENERGETICS AND ELECTRONIC STRUCTURE OF STACKING FAULTS IN ALN, GAN, AND INN , 1998 .

[32]  J. Singh,et al.  Theory of excitonic photoluminescence linewidth in semiconductor alloys , 1984 .

[33]  C. P. Lindsey,et al.  Detailed comparison of the Williams–Watts and Cole–Davidson functions , 1980 .

[34]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .