Digital change detection in forest ecosystems with remote sensing imagery

Abstract The world's forest ecosystems are in a state of permanent flux at a variety of spatial and temporal scales. Monitoring techniques based on multispectral satellite‐acquired data have demonstrated potential as a means to detect, identify, and map changes in forest cover. This paper, which reviews the methods and the results of digital change detection primarily in temperate forest ecosystems, has two major components. First, the different perspectives from which the variability in the change event has been approached are summarized, and the appropriate choice of digital imagery acquisition dates and interval length for change detection are discussed. In the second part, preprocessing routines to establish a more direct linkage between digital remote sensing data and biophysical phenomena, and the actual change detection methods themselves are reviewed and critically assessed. A case study in temperate forests (north‐central U.S.A.) then serves as an illustration of how the different change detectio...

[1]  W. Malila Change Vector Analysis: An Approach for Detecting Forest Changes with Landsat , 1980 .

[2]  J. R. Jensen Urban Change Detection Mapping Using Landsat Digital Data , 1981 .

[3]  Philip J. Howarth,et al.  Procedures for change detection using Landsat digital data , 1981 .

[4]  Armond T. Joyce,et al.  Evaluation of land cover change detection techniques using Landsat MSS data , 1982 .

[5]  C. J. Robinove,et al.  Computation with physical values from Landsat digital data , 1982 .

[6]  R. Nelson Detecting forest canopy change due to insect activity using Landsat MSS , 1983 .

[7]  Robert A. Schowengerdt CHAPTER 2 – Digital Image Processing , 1983 .

[8]  Robert A. Schowengerdt,et al.  Techniques for image processing and classification in remote sensing , 1983 .

[9]  Ronald J. Hall,et al.  Change Detection Methodology for Aspen Defoliation with Landsat Mss Digital Data , 1984 .

[10]  John A. Richards,et al.  Thematic mapping from multitemporal image data using the principal components transformation , 1984 .

[11]  E. Crist,et al.  Application of the Tasseled Cap concept to simulated thematic mapper data , 1984 .

[12]  S. Ingebritsen,et al.  Principal components analysis of multitemporal image pairs , 1985 .

[13]  A. Rencz Multitemporal Analysis of Landsat Imagery for Monitoring Forest Cutovers in Nova Scotia , 1985 .

[14]  A. R. Harrison,et al.  Standardized principal components , 1985 .

[15]  E. LeDrew,et al.  Application of principal components analysis to change detection , 1987 .

[16]  R. J. Brown,et al.  Review Article Radiometric correction of visible and infrared remote sensing data at the Canada Centre for Remote Sensing , 1987 .

[17]  Toshiro Sugimura,et al.  Extraction of areas infested by pine bark beetle using Landsat MSS data , 1987 .

[18]  J. A. E. Allum,et al.  Remote sensing of vegetation change near Inco's Sudbury mining complexes , 1987 .

[19]  P. O. Adeniyi,et al.  An enhanced classification approach to change detection in semi-arid environments , 1988 .

[20]  A. Milne,et al.  Change Direction Analysis Using Landsat Imagery: A Review Of Methodology , 1988, International Geoscience and Remote Sensing Symposium, 'Remote Sensing: Moving Toward the 21st Century'..

[21]  J. Vogelmann Detection of forest change in the Green Mountains of Vermont using Multispectral Scanner data , 1988 .

[22]  B. Rock,et al.  Assessing forest damage in high-elevation coniferous forests in vermont and new Hampshire using thematic mapper data , 1988 .

[23]  Paul Mausel,et al.  Data structure characterization of miltispectral data using principal component and principal factor analysis , 1989 .

[24]  V. Caselles,et al.  An alternative simple approach to estimate atmospheric correction in multitemporal studies , 1989 .

[25]  F. Parmiggiani,et al.  Classification methods on multispectral SPOT images , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.

[26]  F. J. Ahern,et al.  Stratification Of A Regenerating Burned forest In Alberta Using Thematic Mapper And C-sar Images , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.

[27]  S. Ekstrand,et al.  The Possibilities Of Assessing Moderate Damages On Norway Spruce Using Landsat Tm Data And Ancillary Stand Information In A Gis Environment , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.

[28]  Ashbindu Singh,et al.  Review Article Digital change detection techniques using remotely-sensed data , 1989 .

[29]  P. Chavez Radiometric calibration of Landsat Thematic Mapper multispectral images , 1989 .

[30]  A. Cracknell,et al.  Linear discriminant and profile analysis An aid in remote sensing for geobotanical investigation , 1989 .

[31]  R. Hobbs Remote Sensing of Spatial and Temporal Dynamics of Vegetation , 1990 .

[32]  R. G. White,et al.  Change detection in SAR imagery , 1990 .

[33]  Tung Fung,et al.  An Assessment Of TM Imagery For Land-cover Change Detection , 1990 .

[34]  C. J. Robinove,et al.  Assumptions implicit in remote sensing data acquisition and analysis , 1990 .

[35]  P. Swain,et al.  Neural Network Approaches Versus Statistical Methods In Classification Of Multisource Remote Sensing Data , 1990 .

[36]  Jeremy F. Wallace,et al.  Analysis of remotely sensed data , 1990 .

[37]  J. Conel Determination of surface reflectance and estimates of atmospheric optical depth and single scattering albedo from Landsat Thematic Mapper data , 1990 .

[38]  G. Edwards,et al.  Image Segmentation, Cartographic Information And Knowledge-based Reasoning: Getting The Mixture Right , 1990, 10th Annual International Symposium on Geoscience and Remote Sensing.

[39]  J.A.T. Young,et al.  Monitoring Changes In Land Use Through Integration Of Remote Sensing And GIS , 1990, 10th Annual International Symposium on Geoscience and Remote Sensing.

[40]  M. E. Bauer,et al.  Classification of forest vegetation in north-central Minnesota using Landsat multispectral scanner and thematic mapper data. , 1990 .

[41]  Kipling D. Williams Change: Now you see it, now you don't. , 1990 .

[42]  R. C. Maggio,et al.  An analysis of anthropogenic deforestation using logistic regression and GIS , 1990 .

[43]  Dong-Chen He,et al.  Texture Feature Extraction From Texture Spectrum , 1990, 10th Annual International Symposium on Geoscience and Remote Sensing.

[44]  J. Hill,et al.  Radiometric correction of multitemporal Thematic Mapper data for use in agricultural land-cover classification and vegetation monitoring , 1991 .

[45]  Nanno Mulder,et al.  Progress in Knowledge engineering for Image Interpretation and Classification , 1991 .

[46]  S. Goetz,et al.  Large-Scale Patterns of Forest Succession as Determined by Remote Sensing , 1991 .

[47]  Dan Johan Weydahl Change Detection in Sar Images , 1991, [Proceedings] IGARSS'91 Remote Sensing: Global Monitoring for Earth Management.

[48]  S. Goetz,et al.  Radiometric rectification - Toward a common radiometric response among multidate, multisensor images , 1991 .

[49]  H. M. Rauscher,et al.  Enhancing the Scientific Process with Artificial Intelligence: Forest Science Applications , 1991 .

[50]  Christopher Justice,et al.  The impact of misregistration on change detection , 1992, IEEE Trans. Geosci. Remote. Sens..

[51]  Paul V. Bolstad,et al.  Improved classification of forest vegetation in northern Wisconsin through a rule-based combination of soils, terrain, and Landsat Thematic Mapper data , 1992 .

[52]  Horst Bischof,et al.  Multispectral classification of Landsat-images using neural networks , 1992, IEEE Trans. Geosci. Remote. Sens..

[53]  J. Cihlar,et al.  Change detection with synthetic aperture radar , 1992 .

[54]  M. A. Alwashe,et al.  Monitoring vegetation changes in Al Madinah, Saudi Arabia, using Thematic Mapper data , 1993 .

[55]  D. R. Fatland,et al.  Change detection on Alaska's North Slope using repeat-pass ERS-1 SAR images , 1993, IEEE Trans. Geosci. Remote. Sens..

[56]  Jakob J. van Zyl,et al.  Change detection techniques for ERS-1 SAR data , 1993, IEEE Trans. Geosci. Remote. Sens..

[57]  Susan L. Ustin,et al.  19 – Remote Sensing of Ecological Processes: A Strategy for Developing and Testing Ecological Models Using Spectral Mixture Analysis , 1993 .

[58]  Alan H. Strahler,et al.  Change-vector analysis in multitemporal space: a tool to detect and categorize land-cover change pro , 1994 .

[59]  Curtis E. Woodcock,et al.  Change detection using the Gramm-Schmidt transformation applied to mapping forest mortality , 1994 .

[60]  V. Judson Harward,et al.  Mapping forest vegetation using landsat TM imagery and a canopy reflectance model , 1994 .

[61]  Marvin E. Bauer,et al.  Processing of multitemporal Landsat TM imagery to optimize extraction of forest cover change features , 1994, IEEE Trans. Geosci. Remote. Sens..

[62]  C. Justice,et al.  Development of vegetation and soil indices for MODIS-EOS , 1994 .

[63]  William Salas,et al.  Fourier analysis of multi-temporal AVHRR data applied to a land cover classification , 1994 .

[64]  D. Muchoney,et al.  Change detection for monitoring forest defoliation , 1994 .

[65]  Pol Coppin,et al.  Satellite inventory of Minnesota forest resources , 1994 .

[66]  A. Strahler,et al.  Indicators of land-cover change for change-vector analysis in multitemporal space at coarse spatial scales , 1994 .

[67]  Pol Coppin,et al.  The potential contribution of pixel-based canopy change information to stand-based forest management in the Northern U.S. , 1995 .

[68]  Darrel L. Williams,et al.  Global multistage, multispectral sampling capabilities in the late 1990s with sensors on Landsat 7 and the EOS AM1 platform , 1995, Remote Sensing.

[69]  Edwin T. Engman,et al.  Status of remote sensing algorithms for estimation of land surface state parameters , 1995 .

[70]  D. Tanré,et al.  Strategy for direct and indirect methods for correcting the aerosol effect on remote sensing: From AVHRR to EOS-MODIS , 1996 .

[71]  C. Woodcock,et al.  An assessment of several linear change detection techniques for mapping forest mortality using multitemporal landsat TM data , 1996 .

[72]  S. Gopal,et al.  Remote sensing of forest change using artificial neural networks , 1996, IEEE Trans. Geosci. Remote. Sens..