Restricted structure predictive optimal control

The design of low-order predictive optimal controllers, that involve a multi-step cost index and future setpoint knowledge, is considered. The usual predictive controller is of high order and the aim is to develop simpler structures, suitable for applications where PID controllers might be employed. The system is assumed to be represented by a discrete-time state-space model, which is very general, and the quadratic cost-function may include dynamic cost weighting terms. Using this approach, it is straightforward to generate a much lower-order predictive controller and thereby simplify implementation. Even with a continuing improvement in computational power there are many good reasons why low-order simple controllers have advantages in real applications.

[1]  John F. MacGregor,et al.  Design of multivariable linear‐quadratic controllers using transfer functions , 1987 .

[2]  Masayoshi Tomizuka,et al.  On the optimal digital state vector feedback controller with integral and preview actions , 1979 .

[3]  Michael A. Johnson,et al.  Multivariable LQG optimal control — Restricted structure control for benchmarking and tuning , 2003, 2003 European Control Conference (ECC).

[4]  D. Clarke,et al.  A state-space description for GPC controllers , 1993 .

[5]  Michael A. Johnson,et al.  PID controller optimization for fin roll stabilization , 1999 .

[6]  David Clarke,et al.  Properties of Generalized Predictive Control , 1987 .

[7]  Masami Saeki,et al.  Design Method of Robust PID Controller and CAD System , 1997 .

[8]  Bor-Sen Chen,et al.  A genetic approach to mixed H/sub 2//H/sub /spl infin// optimal PID control , 1995 .

[9]  Stephen P. Boyd,et al.  Linear controller design: limits of performance , 1991 .

[10]  J. Richalet,et al.  Model predictive heuristic control: Applications to industrial processes , 1978, Autom..

[11]  Robert R. Bitmead,et al.  OPTIMAL CONTROL REDESIGN OF GENERALIZED PREDICTIVE CONTROL , 1990 .

[12]  Brian D. O. Anderson,et al.  Linear Optimal Control , 1971 .

[13]  R. H. Cannon,et al.  Design of low-order compensators using parameter optimization , 1983, Autom..

[14]  Adaptive Control using Controllers of Restricted Structure , 2001 .

[15]  Andrzej Ordys,et al.  State space generalized predictive control incorporating direct through terms , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[16]  P. Marquis,et al.  SMOC, a bridge between state space and model predictive controllers: Application to the automation of a hydrotreating unit , 1988 .

[17]  Michael J. Grimble Restricted structure control of multiple model systems with series 2 DOF tracking and feedforward action , 2001 .

[18]  M. J. Grimble,et al.  Restricted-structure LQG optimal control for continuous-time systems , 2000 .

[19]  K. Takahashi,et al.  A new PID controller tuning system and its application to a flue gas temperature control in a gas turbine power plant , 1998, Proceedings of the 1998 IEEE International Conference on Control Applications (Cat. No.98CH36104).

[20]  R. Skelton,et al.  The XY-centring algorithm for the dual LMI problem: a new approach to fixed-order control design , 1995 .

[21]  C. R. Cutler,et al.  Dynamic matrix control¿A computer control algorithm , 1979 .

[22]  M. Grimble H2/H∞ restricted structure feedforward and feedback control , 2001, 2001 European Control Conference (ECC).

[23]  Andrzej Ordys,et al.  A Multivariable Dynamic Performance Predictive Control with Application to Power Generation Plants , 1996 .

[24]  Michael J. Grimble,et al.  Industrial Control Systems Design , 1994 .

[25]  Karl Johan Åström,et al.  PID Control Revisited , 1993 .

[26]  C. Knapp,et al.  Parameter optimization in linear systems with arbitrarily constrained controller structure , 1979, 1979 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[27]  Masami Saeki,et al.  Parameter Space Design Method of PID Controller for Robust Sensitivity Minimization Problem , 1996 .

[28]  D. Grant Fisher,et al.  A state space formulation for model predictive control , 1989 .

[29]  R. Russell Rhinehart,et al.  Grouped neural network model-predictive control , 2003 .

[30]  Michael J. Grimble,et al.  Predictive control for industrial applications , 2000, Annu. Rev. Control..

[31]  J. Richalet,et al.  Industrial applications of model based predictive control , 1993, Autom..

[32]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[33]  N. Lawrence Ricker,et al.  Model predictive control with state estimation , 1990 .

[34]  Michael J. Grimble,et al.  POLYNOMIAL SOLUTION OF PREDICTIVE OPTIMAL CONTROL PROBLEMS FOR SYSTEMS IN STATE-EQUATION FORM , 2003 .

[35]  Sigurd Skogestad,et al.  Sequential design of decentralized controllers , 1994, Autom..

[36]  Masami Saeki,et al.  Parameter Space Design Method of PID Controller for H∞ Control Problem , 1998 .

[37]  Glenn Vinnicombe,et al.  On reduced-order H∞ loop-shaping controllers: A design method, and examples of local optima , 1997, 1997 European Control Conference (ECC).

[38]  Masami Saeki A Design Method of the Optimal PID Controller for a Two Disk Type Mixed Sensitivity Problem , 1994 .

[39]  Manfred Morari,et al.  Low-order SISO controller tuning methods for the H2, H∞ and μ objective functions , 1990, Autom..