Changes in brain ECF pH during metabolic acidosis and alkalosis: a microelectrode study.

We used pH-sensitive double-barreled microelectrodes to measure brain extracellular fluid (ECF) pH in anesthetized dogs during isocapnic infusion acidosis (HCl) and alkalosis (Na2CO3) of 45-60 min duration. The diameter of the tips of these electrodes varied from less than 1 to 27 micron and were placed 5 mm below the surface of the parietal cortex. In group I (metabolic acidosis, n = 5) mean plasma and brain ECF pH fell significantly by 0.221 and 0.025, respectively, with changes in brain ECF pH being 11.3% of those noted in plasma. In group II (metabolic alkalosis, n = 5) mean plasma and brain ECF pH rose significantly by 0.170 and 0.049, respectively, with changes in brain ECF pH being 28.8% of those noted in plasma. Mean arterial and sagittal venous PCO2 and cisternal cerebrospinal fluid (CSF) acid-base variables did not change significantly during acid or base infusion. We conclude that during transients of isocapnic metabolic acid-base perturbations ionic gradients exist between brain ECF and CSF and that changes in brain ECF pH measured by microelectrodes follow the changes in plasma pH. These pH changes may play an important role in respiratory adaptations of acute metabolic acidosis and alkalosis.