A Novel Beam-Elastic Substrate Model with Inclusion of Nonlocal Elasticity and Surface Energy Effects

[1]  B. Bhushan Springer Handbook of Nanotechnology , 2017 .

[2]  G. Y. Zhang,et al.  A microstructure- and surface energy-dependent third-order shear deformation beam model , 2015 .

[3]  M. Shaat,et al.  Pull-in instability of multi-phase nanocrystalline silicon beams under distributed electrostatic force , 2015 .

[4]  X.-L. Gao A new Timoshenko beam model incorporating microstructure and surface energy effects , 2015 .

[5]  Nattapong Damrongwiriyanupap,et al.  Force‐based derivation of exact stiffness matrix for beams onWinkler‐Pasternak foundation , 2015 .

[6]  Nattapong Damrongwiriyanupap,et al.  Exact stiffness matrix for nonlocal bars embedded in elastic foundation media: the virtual-force approach , 2014 .

[7]  Suchart Limkatanyu,et al.  Correlation between beam on Winkler-Pasternak foundation and beam on elastic substrate medium with inclusion of microstructure and surface effects , 2014 .

[8]  F. F. Mahmoud,et al.  Nonlinear size-dependent finite element analysis of functionally graded elastic tiny-bodies , 2013 .

[9]  Jun Luo,et al.  Buckling Analysis of a Nanowire Lying on Winkler–Pasternak Elastic Foundation , 2013 .

[10]  T. Senjuntichai,et al.  Rigid frictionless indentation on elastic half space with influence of surface stresses , 2013 .

[11]  Parviz Malekzadeh,et al.  Surface and nonlocal effects on the nonlinear free vibration of non-uniform nanobeams , 2013 .

[12]  F. F. Mahmoud,et al.  Static analysis of nanobeams using nonlocal FEM , 2013 .

[13]  F. F. Mahmoud,et al.  A new Bernoulli–Euler beam model incorporating microstructure and surface energy effects , 2013, Zeitschrift für angewandte Mathematik und Physik.

[14]  F. F. Mahmoud,et al.  Static analysis of nanobeams including surface effects by nonlocal finite element , 2012 .

[15]  Yue Mei,et al.  Large displacement of a static bending nanowire with surface effects , 2012 .

[16]  S. Limkatanyu,et al.  Natural stiffness matrix for beams on Winkler foundation:exact force-based derivation , 2012 .

[17]  J. Yvonnet,et al.  An explicit solution for bending of nanowires lying on Winkler–Pasternak elastic substrate medium based on the Euler–Bernoulli beam theory , 2012 .

[18]  Liying Jiang,et al.  Timoshenko beam model for static bending of nanowires with surface effects , 2010 .

[19]  C. Ru Simple geometrical explanation of Gurtin-Murdoch model of surface elasticity with clarification of its related versions , 2010 .

[20]  J. N. Reddy,et al.  A microstructure-dependent Timoshenko beam model based on a modified couple stress theory , 2008 .

[21]  J. Rogers,et al.  Mechanics of buckled carbon nanotubes on elastomeric substrates , 2008 .

[22]  Jin He,et al.  Surface effect on the elastic behavior of static bending nanowires. , 2008, Nano letters.

[23]  D. Vollath,et al.  On the role of surface energy and surface stress in phase-transforming nanoparticles , 2008 .

[24]  U. Lee,et al.  Evaluation of the Structural Properties of Single-Walled Carbon Nanotubes Using a Dynamic Continuum Modeling Method , 2008 .

[25]  H. P. Lee,et al.  Application of nonlocal beam models for carbon nanotubes , 2007 .

[26]  Michael L. Roukes,et al.  Very High Frequency Silicon Nanowire Electromechanical Resonators , 2007 .

[27]  J. N. Reddy,et al.  Nonlocal theories for bending, buckling and vibration of beams , 2007 .

[28]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[29]  Vijay B. Shenoy,et al.  Atomistic calculations of elastic properties of metallic fcc crystal surfaces , 2005 .

[30]  Rashid Bashir,et al.  Detection of bacterial cells and antibodies using surface micromachined thin silicon cantilever resonators , 2004 .

[31]  John Peddieson,et al.  Application of nonlocal continuum models to nanotechnology , 2003 .

[32]  Vijay B. Shenoy,et al.  Size-dependent elastic properties of nanosized structural elements , 2000 .

[33]  Robert C. Cammarata,et al.  Surface and interface stress effects on interfacial and nanostructured materials , 1997 .

[34]  Robert C. Cammarata,et al.  SURFACE AND INTERFACE STRESS EFFECTS IN THIN FILMS , 1994 .

[35]  A. Eringen On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves , 1983 .

[36]  Morton E. Gurtin,et al.  A continuum theory of elastic material surfaces , 1975 .

[37]  A. Eringen,et al.  On nonlocal elasticity , 1972 .

[38]  Dominic G.B. Edelen,et al.  Nonlocal continuum mechanics , 1971 .

[39]  E. Kröner,et al.  Elasticity theory of materials with long range cohesive forces , 1967 .

[40]  K. Terzaghi,et al.  EVALUATION OF COEFFICIENTS OF SUBGRADE REACTION , 1955 .

[41]  M. Shaat Iterative nonlocal elasticity for Kirchhoff plates , 2015 .

[42]  C. Lim,et al.  Non-classical stiffness strengthening size effects for free vibration of a nonlocal nanostructure , 2012 .

[43]  Charles M. Lieber,et al.  High Performance Silicon Nanowire Field Effect Transistors , 2003 .

[44]  Stephen Wolfram,et al.  Mathematica reference guide , 1992 .

[45]  Morton E. Gurtin,et al.  Surface stress in solids , 1978 .

[46]  A. C. Eringen,et al.  Nonlocal polar elastic continua , 1972 .

[47]  C. Truesdell,et al.  The Nonlinear Field Theories in Mechanics , 1968 .

[48]  H. F. Tiersten,et al.  Effects of couple-stresses in linear elasticity , 1962 .

[49]  J. H. Argyris,et al.  Energy theorems and structural analysis , 1960 .

[50]  Gabriela Koreisová,et al.  Scientific Papers , 1997, Nature.

[51]  C. K. The Scientific Papers of J Willard Gibbs , 1907, Nature.