Modification of the surface pathways in alkane oxidation by selective doping of Broensted acid sites of vanadyl pyrophosphate
暂无分享,去创建一个
The modification of Bronsted POH groups of (VO){sub 2}P{sub 2}O{sub 7} by selective doping with K in an anhydrous medium causes a considerable modification of the surface oxidation pathways in C{sub 4}- and C{sub 5}-alkane oxidative transformation, with (i) a considerable decrease in the selective formation of maleic anhydride from n-butane and of maleic and phthalic anhydrides from n-pentane, (ii) an increase in the relative formation of C-containing surface residues. It is suggested that these effects are due to an inhibition of the catalyzed transformation of furan-like intermediates to corresponding lactones and then to anhydrides in the presence of gaseous O{sub 2} and to a change in the relative rates of O-insertion and H-abstraction on these surface intermediates. The role of the dynamics of competitive surface transformations of adsorbed intermediates on the overall behavior of vanadyl pyrophosphate in C{sub 4}- and C{sub 5}-alkane selective oxidation is also discussed.