Systematic engineering of Escherichia coli for efficient production of nicotinamide riboside from nicotinamide and 3-cyanopyridine.

[1]  Si-Yu Li,et al.  Producing medium-chain-length polyhydroxyalkanoate from diverse feedstocks by deregulating unsaturated fatty acid biosynthesis in Escherichia coli. , 2022, Bioresource technology.

[2]  Jingwen Zhou,et al.  Systematic Engineering of Escherichia coli for Efficient Production of Nicotinamide Mononucleotide From Nicotinamide. , 2022, ACS synthetic biology.

[3]  S. Lee,et al.  Metabolic engineering of Escherichia coli with electron channelling for the production of natural products , 2022, Nature Catalysis.

[4]  Yuguo Zheng,et al.  Module engineering coupled with omics strategies for enhancing D-pantothenate production in Escherichia coli. , 2022, Bioresource technology.

[5]  Nichola J. Conlon,et al.  A systems-approach to NAD+ restoration. , 2022, Biochemical pharmacology.

[6]  A. Abbaspourrad,et al.  Synthesis, Stability, and Bioavailability of Nicotinamide Riboside Trioleate Chloride , 2021, Nutrients.

[7]  B. Kim,et al.  Biosynthesis of a Therapeutically Important Nicotinamide Mononucleotide through a Phosphoribosyl Pyrophosphate Synthetase 1 and 2 Engineered Strain of Escherichia coli. , 2021, ACS synthetic biology.

[8]  Yang Liu,et al.  Metabolic engineering of Escherichia coli for biosynthesis of β‐nicotinamide mononucleotide from nicotinamide , 2021, Microbial biotechnology.

[9]  M. Ziegler,et al.  Enzymatic and Chemical Syntheses of Vacor Analogs of Nicotinamide Riboside, NMN and NAD , 2021, Biomolecules.

[10]  Yelin Wu,et al.  Nicotinamide Riboside Enhances Endothelial Precursor Cell Function to Promote Refractory Wound Healing Through Mediating the Sirt1/AMPK Pathway , 2021, Frontiers in Pharmacology.

[11]  B. Spingler,et al.  New Crystalline Salts of Nicotinamide Riboside as Food Additives , 2021, Molecules.

[12]  A. Kondo,et al.  Metabolic design for selective production of nicotinamide mononucleotide from glucose and nicotinamide. , 2020, Metabolic engineering.

[13]  Han Li,et al.  Metabolic engineering of Escherichia coli for optimized biosynthesis of nicotinamide mononucleotide, a noncanonical redox cofactor , 2020, bioRxiv.

[14]  M. Migaud,et al.  Nicotinamide riboside-amino acid conjugates that are stable to purine nucleoside phosphorylase. , 2020, Organic & biomolecular chemistry.

[15]  Ji-Young Lee,et al.  Nicotinamide riboside, an NAD+ precursor, attenuates the development of liver fibrosis in a diet-induced mouse model of liver fibrosis. , 2019, Biochimica et biophysica acta. Molecular basis of disease.

[16]  B. Spingler,et al.  Nicotinamide Riboside Derivatives: Single Crystal Growth and Determination of X-ray Structures , 2019, Crystal Growth & Design.

[17]  M. Migaud,et al.  Syntheses and chemical properties of β-nicotinamide riboside and its analogues and derivatives , 2019, Beilstein journal of organic chemistry.

[18]  Xiaolin Pei,et al.  Efficient inducible expression of nitrile hydratase in Corynebacterium glutamicum , 2019, Process Biochemistry.

[19]  P. Sachdev,et al.  Role of Nicotinamide Adenine Dinucleotide and Related Precursors as Therapeutic Targets for Age-Related Degenerative Diseases: Rationale, Biochemistry, Pharmacokinetics, and Outcomes. , 2019, Antioxidants & redox signaling.

[20]  J. Baur,et al.  NAD+ Intermediates: The Biology and Therapeutic Potential of NMN and NR. , 2017, Cell metabolism.

[21]  Zhemin Zhou,et al.  Establishment of Bioprocess for Synthesis of Nicotinamide by Recombinant Escherichia coli Expressing High-Molecular-Mass Nitrile Hydratase , 2017, Applied Biochemistry and Biotechnology.

[22]  T. Bhalla,et al.  Expression of nitrile hydratase gene of mutant 4D strain of Rhodococcus rhodochrous PA 34 in Pichia pastoris , 2017 .

[23]  R. Aebersold,et al.  NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice , 2016, Science.

[24]  E. Verdin NAD+ in aging, metabolism, and neurodegeneration , 2015, Science.

[25]  D. Slotboom,et al.  Structure, function, evolution, and application of bacterial Pnu-type vitamin transporters , 2015, Biological chemistry.

[26]  Sheng Yang,et al.  Multigene Editing in the Escherichia coli Genome via the CRISPR-Cas9 System , 2015, Applied and Environmental Microbiology.

[27]  Z. Zhao,et al.  Identification of UshA as a major enzyme for NAD degradation in Escherichia coli. , 2014, Enzyme and microbial technology.

[28]  M. Degano,et al.  Characterization of inosine-uridine nucleoside hydrolase (RihC) from Escherichia coli. , 2014, Biochimica et biophysica acta.

[29]  Qiuyan Wang,et al.  Addition of Co2+ to culture medium decides the functional expression of a recombinant nitrile hydratase in Escherichia coli , 2013, Biotechnology Letters.

[30]  J. Auwerx,et al.  The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. , 2012, Cell metabolism.

[31]  Charles R. Evans,et al.  Nrt1 and Tna1-Independent Export of NAD+ Precursor Vitamins Promotes NAD+ Homeostasis and Allows Engineering of Vitamin Production , 2011, PloS one.

[32]  M. Degano,et al.  Active site plasticity revealed from the structure of the enterobacterial N-ribohydrolase RihA bound to a competitive inhibitor , 2010, BMC Structural Biology.

[33]  Charles R. Evans,et al.  Identification of Isn1 and Sdt1 as Glucose- and Vitamin-regulated Nicotinamide Mononucleotide and Nicotinic Acid Mononucleotide 5′-Nucleotidases Responsible for Production of Nicotinamide Riboside and Nicotinic Acid Riboside* , 2009, The Journal of Biological Chemistry.

[34]  C. Brenner,et al.  Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. , 2008, Annual review of nutrition.

[35]  C. Brenner,et al.  Nicotinamide Riboside Promotes Sir2 Silencing and Extends Lifespan via Nrk and Urh1/Pnp1/Meu1 Pathways to NAD+ , 2007, Cell.

[36]  J. Steyaert,et al.  New insights into the mechanism of nucleoside hydrolases from the crystal structure of the Escherichia coli YbeK protein bound to the reaction product. , 2006, Biochemistry.

[37]  Niloufar B. Gillani,et al.  Kinetic isotope effects of nucleoside hydrolase from Escherichia coli. , 2005, Biochimica et biophysica acta.

[38]  Hirotada Mori,et al.  General Enzymatic Screens Identify Three New Nucleotidases in Escherichia coli , 2004, Journal of Biological Chemistry.

[39]  G. Bringmann,et al.  PnuC and the Utilization of the Nicotinamide Riboside Analog 3-Aminopyridine in Haemophilus influenzae , 2004, Antimicrobial Agents and Chemotherapy.

[40]  R. Petrelli,et al.  Stereoselective synthesis of nicotinamide β-riboside and nucleoside analogs , 2004 .

[41]  C. Brenner,et al.  Discoveries of Nicotinamide Riboside as a Nutrient and Conserved NRK Genes Establish a Preiss-Handler Independent Route to NAD+ in Fungi and Humans , 2004, Cell.

[42]  L. Møller,et al.  The RihA, RihB, and RihC ribonucleoside hydrolases of Escherichia coli. Substrate specificity, gene expression, and regulation. , 2001, The Journal of biological chemistry.