On Relation Between Kirchhoff Index, Laplacian-Energy-Like Invariant and Laplacian Energy of Graphs

Let $$G=(V,E)$$G=(V,E) be a simple graph of order n with m edges and Laplacian eigenvalues $$\mu _1\ge \mu _2\ge \cdots \ge \mu _{n-1}\ge \mu _n=0$$μ1≥μ2≥⋯≥μn-1≥μn=0. The Kirchhoff index and the Laplacian-energy-like invariant of G are defined as $$\begin{aligned} \mathrm{Kf}(G)=n\sum _{k=1}^{n-1}\frac{1}{\mu _k}~~ \text{ and } ~~\mathrm{LEL}(G)=\sum _{k=1}^{n-1}\sqrt{\mu _k}, \end{aligned}$$Kf(G)=n∑k=1n-11μkandLEL(G)=∑k=1n-1μk,respectively. The Laplacian energy of the graph G is defined as $$\begin{aligned} \mathrm{LE}(G)=\sum ^n_{i=1}\Big |\mu _i-\frac{2m}{n}\Big |. \end{aligned}$$LE(G)=∑i=1n|μi-2mn|.In this paper, we present an upper bound on Kf of graphs. Also, we obtain some relations between Kf, LEL and first Zagreb index of G. Finally, we give a relation between LEL and LE of G.

[1]  Kinkar Chandra Das,et al.  A Sharp Upper Bound for the Number of Spanning Trees of a Graph , 2007, Graphs Comb..

[2]  W. Shiu,et al.  The Laplacian spectral radius of some graphs , 2009 .

[3]  Pablo Andrés Arbeláez,et al.  Finding Semantic Structures in Image Hierarchies Using Laplacian Graph Energy , 2010, ECCV.

[4]  Aleksandar Ilic,et al.  LEL-a Newly Designed Molecular Descriptor , 2009 .

[5]  Frank Harary,et al.  Distance in graphs , 1990 .

[6]  Heping Zhang,et al.  New Nordhaus-Gaddum-type results for the Kirchhoff index , 2011 .

[7]  Bolian Liu,et al.  A Laplacian-energy-like invariant of a graph , 2008 .

[8]  Bo Zhou,et al.  On Laplacian Energy , 2013 .

[9]  K. Das The Laplacian spectrum of a graph , 2004 .

[10]  Bolian Liu,et al.  A Survey on the Laplacian-Energy-Like Invariant ∗ , 2011 .

[11]  Douglas J. Klein,et al.  A recursion formula for resistance distances and its applications , 2013, Discret. Appl. Math..

[12]  G. Pólya,et al.  Problems and Theorems in Analysis I: Series. Integral Calculus. Theory of Functions , 1976 .

[13]  I. Gutman,et al.  Resistance distance and Laplacian spectrum , 2003 .

[14]  Mei Lu,et al.  Lower bounds of the Laplacian spectrum of graphs based on diameter , 2007 .

[15]  Kinkar Chandra Das,et al.  On Laplacian energy of graphs , 2014, Discrete Mathematics.

[16]  Kexiang Xu,et al.  Comparison between Kirchhoff index and the Laplacian-energy-like invariant , 2012 .

[17]  Ernesto Estrada,et al.  Topological atomic displacements, Kirchhoff and Wiener indices of molecules , 2009, 0912.2628.

[18]  R. Merris Laplacian matrices of graphs: a survey , 1994 .

[19]  István Lukovits,et al.  Extensions of the Wiener Number , 1996, J. Chem. Inf. Comput. Sci..

[20]  A. Sinan Çevik,et al.  On the Laplacian-energy-like invariant , 2014 .

[21]  I. Gutman,et al.  Laplacian energy of a graph , 2006 .

[22]  Aleksandar Ilic,et al.  ON LAPLACIAN LIKE ENERGY OF TREES , 2011, 1103.4814.

[23]  K. Das On the Kirchhoff Index of Graphs , 2013 .

[24]  Piotr Biler,et al.  Problems in mathematical analysis , 1990 .

[25]  K. Das,et al.  EXTREMAL LAPLACIAN-ENERGY-LIKE INVARIANT OF GRAPHS WITH GIVEN MATCHING NUMBER ∗ , 2013 .

[26]  Bojan Mohar,et al.  The Quasi-Wiener and the Kirchhoff Indices Coincide , 1996, J. Chem. Inf. Comput. Sci..

[27]  Bao-Xuan Zhu The Laplacian-energy like of graphs , 2011, Appl. Math. Lett..