On Relation Between Kirchhoff Index, Laplacian-Energy-Like Invariant and Laplacian Energy of Graphs
暂无分享,去创建一个
[1] Kinkar Chandra Das,et al. A Sharp Upper Bound for the Number of Spanning Trees of a Graph , 2007, Graphs Comb..
[2] W. Shiu,et al. The Laplacian spectral radius of some graphs , 2009 .
[3] Pablo Andrés Arbeláez,et al. Finding Semantic Structures in Image Hierarchies Using Laplacian Graph Energy , 2010, ECCV.
[4] Aleksandar Ilic,et al. LEL-a Newly Designed Molecular Descriptor , 2009 .
[5] Frank Harary,et al. Distance in graphs , 1990 .
[6] Heping Zhang,et al. New Nordhaus-Gaddum-type results for the Kirchhoff index , 2011 .
[7] Bolian Liu,et al. A Laplacian-energy-like invariant of a graph , 2008 .
[8] Bo Zhou,et al. On Laplacian Energy , 2013 .
[9] K. Das. The Laplacian spectrum of a graph , 2004 .
[10] Bolian Liu,et al. A Survey on the Laplacian-Energy-Like Invariant ∗ , 2011 .
[11] Douglas J. Klein,et al. A recursion formula for resistance distances and its applications , 2013, Discret. Appl. Math..
[12] G. Pólya,et al. Problems and Theorems in Analysis I: Series. Integral Calculus. Theory of Functions , 1976 .
[13] I. Gutman,et al. Resistance distance and Laplacian spectrum , 2003 .
[14] Mei Lu,et al. Lower bounds of the Laplacian spectrum of graphs based on diameter , 2007 .
[15] Kinkar Chandra Das,et al. On Laplacian energy of graphs , 2014, Discrete Mathematics.
[16] Kexiang Xu,et al. Comparison between Kirchhoff index and the Laplacian-energy-like invariant , 2012 .
[17] Ernesto Estrada,et al. Topological atomic displacements, Kirchhoff and Wiener indices of molecules , 2009, 0912.2628.
[18] R. Merris. Laplacian matrices of graphs: a survey , 1994 .
[19] István Lukovits,et al. Extensions of the Wiener Number , 1996, J. Chem. Inf. Comput. Sci..
[20] A. Sinan Çevik,et al. On the Laplacian-energy-like invariant , 2014 .
[21] I. Gutman,et al. Laplacian energy of a graph , 2006 .
[22] Aleksandar Ilic,et al. ON LAPLACIAN LIKE ENERGY OF TREES , 2011, 1103.4814.
[23] K. Das. On the Kirchhoff Index of Graphs , 2013 .
[24] Piotr Biler,et al. Problems in mathematical analysis , 1990 .
[25] K. Das,et al. EXTREMAL LAPLACIAN-ENERGY-LIKE INVARIANT OF GRAPHS WITH GIVEN MATCHING NUMBER ∗ , 2013 .
[26] Bojan Mohar,et al. The Quasi-Wiener and the Kirchhoff Indices Coincide , 1996, J. Chem. Inf. Comput. Sci..
[27] Bao-Xuan Zhu. The Laplacian-energy like of graphs , 2011, Appl. Math. Lett..