A Relaxed Constant Positive Linear Dependence Constraint Qualification for Mathematical Programs with Equilibrium Constraints

We introduce a relaxed version of the constant positive linear dependence constraint qualification for mathematical programs with equilibrium constraints (MPEC). This condition is weaker but easier to check than the MPEC constant positive linear dependence constraint qualification, and stronger than the MPEC Abadie constraint qualification (thus, it is an MPEC constraint qualification for M-stationarity). Neither the new constraint qualification implies the MPEC generalized quasinormality, nor the MPEC generalized quasinormality implies the new constraint qualification. The new one ensures the validity of the local MPEC error bound under certain additional assumptions. We also have improved some recent results on the existence of a local error bound in the standard nonlinear program.

[1]  Christian Kanzow,et al.  Convergence of a local regularization approach for mathematical programmes with complementarity or vanishing constraints , 2012, Optim. Methods Softw..

[2]  C. Kanzow,et al.  A Fritz John Approach to First Order Optimality Conditions for Mathematical Programs with Equilibrium Constraints , 2003 .

[3]  B. Mordukhovich Variational analysis and generalized differentiation , 2006 .

[4]  Michal Kočvara,et al.  Nonsmooth approach to optimization problems with equilibrium constraints : theory, applications, and numerical results , 1998 .

[5]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[6]  J. V. Outrata,et al.  Optimality conditions for a class of mathematical programs with equilibrium constraints: strongly regular case , 1999, Kybernetika.

[7]  Masao Fukushima,et al.  Complementarity Constraint Qualifications and Simplified B-Stationarity Conditions for Mathematical Programs with Equilibrium Constraints , 1999, Comput. Optim. Appl..

[8]  N. H. Chieu,et al.  Characterizing Convexity of a Function by Its Fréchet and Limiting Second-Order Subdifferentials , 2011 .

[9]  Christian Kanzow,et al.  On M-stationary points for mathematical programs with equilibrium constraints , 2005 .

[10]  Gui-Hua Lin,et al.  Hybrid Approach with Active Set Identification for Mathematical Programs with Complementarity Constraints , 2003 .

[11]  Paulo J. S. Silva,et al.  A relaxed constant positive linear dependence constraint qualification and applications , 2011, Mathematical Programming.

[12]  C. Kanzow,et al.  On the Guignard constraint qualification for mathematical programs with equilibrium constraints , 2005 .

[13]  Boris S. Mordukhovich,et al.  Second-Order Subdifferential Calculus with Applications to Tilt Stability in Optimization , 2011, SIAM J. Optim..

[14]  L. Minchenko,et al.  On relaxed constant rank regularity condition in mathematical programming , 2011 .

[15]  Zhi-Quan Luo,et al.  Exact penalization and stationarity conditions of mathematical programs with equilibrium constraints , 1996, Math. Program..

[16]  Christian Kanzow,et al.  Abadie-Type Constraint Qualification for Mathematical Programs with Equilibrium Constraints , 2005 .

[17]  Leonid Minchenko,et al.  Parametric Nonlinear Programming Problems under the Relaxed Constant Rank Condition , 2011, SIAM J. Optim..

[18]  Stefan Scholtes,et al.  Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity , 2000, Math. Oper. Res..

[19]  Hubertus Th. Jongen,et al.  MPCC: Critical Point Theory , 2009, SIAM J. Optim..

[20]  Jane J. Ye,et al.  Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints , 2005 .

[21]  M. Ulbrich,et al.  A New Relaxation Scheme for Mathematical Programs with Equilibrium Constraints , 2010, SIAM J. Optim..

[22]  Stephan Dempe,et al.  Foundations of Bilevel Programming , 2002 .

[23]  Alexey F. Izmailov,et al.  An Active-Set Newton Method for Mathematical Programs with Complementarity Constraints , 2008, SIAM J. Optim..

[24]  Nguyen Huy Chieu,et al.  CODERIVATIVE AND MONOTONICITY OF CONTINUOUS MAPPINGS , 2012 .

[25]  Christian Kanzow,et al.  Mathematical Programs with Equilibrium Constraints: Enhanced Fritz John-conditions, New Constraint Qualifications, and Improved Exact Penalty Results , 2010, SIAM J. Optim..

[26]  Alexandra Schwartz,et al.  Mathematical Programs with Complementarity Constraints : Theory, Methods and Applications , 2011 .

[27]  J. J. Ye,et al.  Necessary Optimality Conditions for Optimization Problems with Variational Inequality Constraints , 1997, Math. Oper. Res..

[28]  Lei Guo,et al.  Notes on Some Constraint Qualifications for Mathematical Programs with Equilibrium Constraints , 2013, J. Optim. Theory Appl..

[29]  N. Q. Huy,et al.  Second-order subdifferentials and convexity of real-valued functions ☆ , 2011 .

[30]  Jane J. Ye,et al.  Partial Exact Penalty for Mathematical Programs with Equilibrium Constraints , 2008 .

[31]  Sonja Steffensen,et al.  Characterization of strong stability for C-stationary points in MPCC , 2012, Math. Program..

[32]  Jong-Shi Pang,et al.  Three modeling paradigms in mathematical programming , 2010, Math. Program..

[33]  Boris S. Mordukhovich,et al.  On Second-Order Subdifferentials and Their Applications , 2001, SIAM J. Optim..