Epitaxial CsPbBr3/CdS Janus Nanocrystal Heterostructures for Efficient Charge Separation

Epitaxial heterostructures of colloidal lead halide perovskite nanocrystals (NCs) with other semiconductors, especially the technologically important metal chalcogenides, can offer an unprecedented level of control in wavefunction design and exciton/charge carrier engineering. These NC heterostructures are ideal material platforms for efficient optoelectronics and other applications. Existing methods, however, can only yield heterostructures with random connections and distributions of the two components. The lack of epitaxial relation and uniform geometry hinders the structure-function correlation and impedes the electronic coupling at the heterointerface. This work reports the synthesis of uniform, epitaxially grown CsPbBr3 /CdS Janus NC heterostructures with ultrafast charge separation across the electronically coupled interface. Each Janus NC contains a CdS domain that grows exclusively on a single {220} facet of CsPbBr3 NCs. Varying reaction parameters allows for precise control in the sizes of each domain and readily modulates the optical properties of Janus NCs. Transient absorption measurements and modeling results reveal a type II band alignment, where photoexcited electrons rapidly transfer (within ≈9 picoseconds) from CsPbBr3 to CdS. The promoted charge separation and extraction in epitaxial Janus NCs leads to photoconductors with drastically improved (approximately three orders of magnitude) responsivity and detectivity, which is promising for ultrasensitive photodetection.

[1]  S. Dutta,et al.  Facets-Directed Epitaxially Grown Lead Halide Perovskite-Sulfobromide Nanocrystal Heterostructures and Their Improved Photocatalytic Activity. , 2022, Journal of the American Chemical Society.

[2]  L. Manna,et al.  Stable CsPbBr3 Nanoclusters Feature a Disk-like Shape and a Distorted Orthorhombic Structure , 2022, Journal of the American Chemical Society.

[3]  Youyu Zhang,et al.  Direct optical patterning of perovskite nanocrystals with ligand cross-linkers , 2022, Science advances.

[4]  V. Gopalan,et al.  Overcoming Shockley-Queisser limit using halide perovskite platform? , 2022, Joule.

[5]  A. Jen,et al.  The evolution and future of metal halide perovskite-based optoelectronic devices , 2021, Matter.

[6]  G. Rainò,et al.  To nano or not to nano for bright halide perovskite emitters , 2021, Nature Nanotechnology.

[7]  Y. Arakawa,et al.  Semiconductor quantum dots: Technological progress and future challenges , 2021, Science.

[8]  S. Dutta,et al.  Why Is Making Epitaxially Grown All Inorganic Perovskite–Chalcogenide Nanocrystal Heterostructures Challenging? Some Facts and Some Strategies , 2021 .

[9]  L. Brus,et al.  Nanocrystal Quantum Dots: From Discovery to Modern Development. , 2021, ACS nano.

[10]  O. Bakr,et al.  Successes and Challenges of Core/Shell Lead Halide Perovskite Nanocrystals , 2021 .

[11]  U. Rothlisberger,et al.  Molecular Origin of the Asymmetric Photoluminescence Spectra of CsPbBr3 at Low Temperature. , 2021, The journal of physical chemistry letters.

[12]  Yongshuai Ge,et al.  An aerosol-liquid-solid process for the general synthesis of halide perovskite thick films for direct-conversion X-ray detectors , 2021 .

[13]  N. Pradhan Alkylammonium Halides for Facet Reconstruction and Shape Modulation in Lead Halide Perovskite Nanocrystals. , 2021, Accounts of chemical research.

[14]  R. Friend,et al.  Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes , 2021 .

[15]  K. Paul,et al.  Hot carrier photovoltaics in van der Waals heterostructures , 2021, Nature Reviews Physics.

[16]  L. Manna,et al.  Halide Perovskite–Lead Chalcohalide Nanocrystal Heterostructures , 2021, Journal of the American Chemical Society.

[17]  T. Zhai,et al.  Excellent Excitonic Photovoltaic Effect in 2D CsPbBr3/CdS Heterostructures , 2020, Advanced Functional Materials.

[18]  N. Pradhan,et al.  Perovskite Nanocrystal Heterostructures: Synthesis, Optical Properties, and Applications , 2020, ACS Energy Letters.

[19]  Chenghao Bi,et al.  CsPbI3/PbSe Heterostructured Nanocrystals for High-Efficiency Solar Cells , 2020 .

[20]  Abhijit Hazarika,et al.  Metal Halide Perovskites in Quantum Dot Solar Cells: Progress and Prospects , 2020 .

[21]  K. Schanze,et al.  Challenges and Opportunities in Designing Perovskite Nanocrystal Heterostructures , 2020, ACS Energy Letters.

[22]  A. Vedda,et al.  Efficient, fast and reabsorption-free perovskite nanocrystal-based sensitized plastic scintillators , 2020, Nature Nanotechnology.

[23]  Angshuman Nag,et al.  CsPbBr3/ZnS Core/Shell Type Nanocrystals for Enhancing Luminescence Lifetime and Water Stability , 2020 .

[24]  Akriti,et al.  Two-dimensional halide perovskite lateral epitaxial heterostructures , 2020, Nature.

[25]  G. Mannino,et al.  Temperature-Dependent Optical Band Gap in CsPbBr3, MAPbBr3, and FAPbBr3 Single Crystals , 2020, The journal of physical chemistry letters.

[26]  M. Roeffaers,et al.  Solar-Driven Metal Halide Perovskite Photocatalysis: Design, Stability, and Performance , 2020 .

[27]  J. Bao,et al.  Heterostructural CsPbX3-PbS (X=Cl,Br,I) Quantum Dots with Tunable Vis-NIR Dual Emission. , 2020, Journal of the American Chemical Society.

[28]  S. Dutta,et al.  Arms Growth and Facets Modulation in Perovskite Nanocrystals. , 2019, Journal of the American Chemical Society.

[29]  Y. Leng,et al.  Single Halide Perovskite/Semiconductor Core/Shell Quantum Dots with Ultrastability and Nonblinking Properties , 2019, Advanced science.

[30]  Andrew H. Proppe,et al.  Lattice anchoring stabilizes solution-processed semiconductors , 2019, Nature.

[31]  Anirban Dutta,et al.  Near-Unity Photoluminescence Quantum Efficiency for All CsPbX3 (X=Cl, Br, and I) Perovskite Nanocrystals: A Generic Synthesis Approach. , 2019, Angewandte Chemie.

[32]  L. Manna,et al.  Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and Their Optical Properties , 2019, Chemical reviews.

[33]  William R. Hollingsworth,et al.  Size Dependence of Charge Carrier Dynamics in Organometal Halide Perovskite Nanocrystals: Deciphering Radiative Versus Nonradiative Components , 2019, The Journal of Physical Chemistry C.

[34]  Liang Li,et al.  Gradient Energy Band Driven High‐Performance Self‐Powered Perovskite/CdS Photodetector , 2019, Advanced materials.

[35]  Jianhui Fu,et al.  Slow Hot‐Carrier Cooling in Halide Perovskites: Prospects for Hot‐Carrier Solar Cells , 2019, Advanced materials.

[36]  Paul Meredith,et al.  Accurate characterization of next-generation thin-film photodetectors , 2018, Nature Photonics.

[37]  William W. Yu,et al.  PbS Capped CsPbI3 Nanocrystals for Efficient and Stable Light-Emitting Devices Using p–i–n Structures , 2018, ACS central science.

[38]  Anirban Dutta,et al.  Dot–Wire–Platelet–Cube: Step Growth and Structural Transformations in CsPbBr3 Perovskite Nanocrystals , 2018, ACS Energy Letters.

[39]  Q. Akkerman,et al.  Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals , 2018, Nature Materials.

[40]  Hua Zhang,et al.  Epitaxial growth of hybrid nanostructures , 2018 .

[41]  Jiwon Bang,et al.  Temperature-Dependent Photoluminescence of Cesium Lead Halide Perovskite Quantum Dots: Splitting of the Photoluminescence Peaks of CsPbBr3 and CsPb(Br/I)3 Quantum Dots at Low Temperature , 2017 .

[42]  Maksym V. Kovalenko,et al.  Properties and potential optoelectronic applications of lead halide perovskite nanocrystals , 2017, Science.

[43]  Matthew C. Beard,et al.  Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells , 2017, Science Advances.

[44]  Louis Brus,et al.  Chemical Synthesis and Luminescence Applications of Colloidal Semiconductor Quantum Dots. , 2017, Journal of the American Chemical Society.

[45]  Zhigang Zang,et al.  Enhanced Stability and Tunable Photoluminescence in Perovskite CsPbX3 /ZnS Quantum Dot Heterostructure. , 2017, Small.

[46]  Sara Bals,et al.  Highly Emissive Divalent-Ion-Doped Colloidal CsPb1–xMxBr3 Perovskite Nanocrystals through Cation Exchange , 2017, Journal of the American Chemical Society.

[47]  J. Cho,et al.  Photoresponse of CsPbBr3 and Cs4PbBr6 Perovskite Single Crystals. , 2017, The journal of physical chemistry letters.

[48]  Cherie R. Kagan,et al.  Building devices from colloidal quantum dots , 2016, Science.

[49]  Abhishek Swarnkar,et al.  Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots. , 2015, Angewandte Chemie.

[50]  Tianquan Lian,et al.  Ultrafast Interfacial Electron and Hole Transfer from CsPbBr3 Perovskite Quantum Dots. , 2015, Journal of the American Chemical Society.

[51]  Liberato Manna,et al.  Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions , 2015, Journal of the American Chemical Society.

[52]  M. Kovalenko,et al.  Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I) , 2015, Nano letters.

[53]  Benoit Dubertret,et al.  Type-II CdSe/CdTe core/crown semiconductor nanoplatelets. , 2014, Journal of the American Chemical Society.

[54]  D. Zahn,et al.  Raman- and IR-Active Phonons in CdSe/CdS Core/Shell Nanocrystals in the Presence of Interface Alloying and Strain , 2013 .

[55]  Zhifu Liu,et al.  Crystal Growth of the Perovskite Semiconductor CsPbBr3: A New Material for High-Energy Radiation Detection , 2013 .

[56]  C. Thomsen,et al.  Interfacial Alloying in CdSe/CdS Heteronanocrystals: A Raman Spectroscopy Analysis , 2012 .

[57]  T. Lian,et al.  Wave function engineering for ultrafast charge separation and slow charge recombination in type II core/shell quantum dots. , 2011, Journal of the American Chemical Society.

[58]  S. Tretiak,et al.  Type-II core/shell CdS/ZnSe nanocrystals: synthesis, electronic structures, and spectroscopic properties. , 2007, Journal of the American Chemical Society.