Composition of hydrated near-Earth object (100085) 1992 UY4

Abstract Near-infrared spectra of the near-Earth object (100085) 1992 UY4 are similar to those of P-type asteroids, providing a fitted geometric albedo of 0.052 ± 0.005 and an effective diameter of 1.68 ± 0.08 km . This object, with a likely outer-belt origin, also exhibits a 3-μm absorption feature with a band depth of 3 % ± 1 % , corresponding to a regolithic bulk hydrogen-to-silicon ratio of 0.30 ± 0.05 . The bulk of this hydrogen seems to be present in H2O-dominated minerals.

[1]  M. Shepard,et al.  Radar and infrared observations of binary near-Earth Asteroid 2002 CE26 , 2006 .

[2]  M. Zolensky,et al.  Absorption bands near three micrometers in diffuse reflectance spectra of carbonaceous chondrites: Comparison with asteroids , 1997 .

[3]  S. Lord A new software tool for computing Earth's atmospheric transmission of near- and far-infrared radiation , 1992 .

[4]  L. Moroz,et al.  REFLECTANCE SPECTRA OF CM2 CHONDRITE MIGHEI IRRADIATED WITH PULSED LASER , 2004 .

[5]  Andrew Scott Rivkin,et al.  Hydrated Minerals on Asteroids: The Astronomical Record , 2003 .

[6]  D. J. Tholen,et al.  Asteroid taxonomic classifications , 1989 .

[7]  John T. Rayner,et al.  SpeX: A Medium‐Resolution 0.8–5.5 Micron Spectrograph and Imager for the NASA Infrared Telescope Facility , 2003 .

[8]  C. Lagerkvist,et al.  Analysis of asteroid lightcurves. , 1990 .

[9]  Erzsébet Merényi,et al.  Classification of asteroid spectra using a neural network , 1994 .

[10]  Richard P. Binzel,et al.  Keck observations of near-Earth asteroids in the thermal infrared , 2003 .

[11]  John T. Rayner,et al.  Spextool: A Spectral Extraction Package for SpeX, a 0.8–5.5 Micron Cross‐Dispersed Spectrograph , 2004 .

[12]  L. Lebofsky Asteroid 1 Ceres - Evidence for water of hydration , 1978 .

[13]  F. Vilas,et al.  Are Low-Albedo Asteroids Thermally Metamorphosed? , 1996 .

[14]  J. Bell,et al.  Visible and Near-Infrared Spectral Observations of 4179 Toutatis , 1994 .

[15]  A. Rivkin,et al.  Infrared spectroscopic observations of 69230 Hermes (1937 UB): possible unweathered endmember among ordinary chondrite analogs , 2004 .

[16]  Alan W. Harris,et al.  A Thermal Model for Near-Earth Asteroids , 1998 .

[17]  Richard P. Binzel,et al.  Observed spectral properties of near-Earth objects: results for population distribution, source regions, and space weathering processes , 2004 .

[18]  Larry A. Lebofsky,et al.  The composition and origin of the C, P, and D asteroids: Water as a tracer of thermal evolution in the outer belt , 1990 .

[19]  M. Zolensky,et al.  Infrared diffuse reflectance spectra of carbonaceous chondrites: Amount of hydrous minerals , 1994 .

[20]  A. Rivkin,et al.  Observations of 433 Eros from 1.25 to 3.35 microns , 2001 .

[21]  B. Hapke,et al.  Asteroid Space Weathering and Regolith Evolution , 2002 .

[22]  M. Zolensky,et al.  Thermal metamorphism of the C, G, B, and F asteroids seen from the 0.7 μm, 3 μm, and UV absorption strengths in comparison with carbonaceous chondrites , 1996 .

[23]  R. H. Brown,et al.  Hydrogen concentrations on C‐class asteroids derived from remote sensing , 2003 .