Low Complexity MMSE Vector Precoding Using Lattice Reduction for MIMO Systems

In this paper, a lattice-reduction-aided (LRA) minimum mean square error (MMSE) vector precoding (VP) is proposed for multiple input multiple output (MIMO) systems. Three schemes are provided for the perturbation vector design by Babai's approximation procedures based on lattice reduction method to reduce the complexity. Performance and complexity analysis are provided. Simulation results show that the proposed schemes significantly outperform the conventional MMSE Tomlinson-Harashima precoding (THP) and the zero forcing (ZF) VP. Compared with the MMSE VP via closest-point search, our LRA approach provides a simple alternative with little performance loss.

[1]  Robert F. H. Fischer,et al.  Lattice-reduction-aided broadcast precoding , 2004, IEEE Transactions on Communications.

[2]  A. Lee Swindlehurst,et al.  A vector-perturbation technique for near-capacity multiantenna multiuser communication-part I: channel inversion and regularization , 2005, IEEE Transactions on Communications.

[3]  Robert F. H. Fischer,et al.  Low-complexity near-maximum-likelihood detection and precoding for MIMO systems using lattice reduction , 2003, Proceedings 2003 IEEE Information Theory Workshop (Cat. No.03EX674).

[4]  Wolfgang Utschick,et al.  Minimum Mean Square Error Vector Precoding , 2005, 2005 IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications.

[5]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[6]  Dirk Wübben,et al.  Near-maximum-likelihood detection of MIMO systems using MMSE-based lattice reduction , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[7]  Anna Scaglione,et al.  Optimal designs for space-time linear precoders and decoders , 2002, IEEE Trans. Signal Process..

[8]  Shu Wang,et al.  Linear multiuser precoding for synchronous CDMA , 2003, 2003 IEEE Wireless Communications and Networking, 2003. WCNC 2003..

[9]  Feng Liu,et al.  Lattice-Reduction-Aided MMSE Tomlinson-Harashima Precoding for MIMO Systems , 2007, IEICE Trans. Commun..

[10]  Gregory W. Wornell,et al.  Lattice-reduction-aided detectors for MIMO communication systems , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[11]  David Tse,et al.  Sum capacity of the vector Gaussian broadcast channel and uplink-downlink duality , 2003, IEEE Trans. Inf. Theory.

[12]  László Babai,et al.  On Lovász’ lattice reduction and the nearest lattice point problem , 1986, Comb..

[13]  A. Lee Swindlehurst,et al.  A vector-perturbation technique for near-capacity multiantenna multiuser communication-part II: perturbation , 2005, IEEE Transactions on Communications.

[14]  Reinaldo A. Valenzuela,et al.  Simplified processing for high spectral efficiency wireless communication employing multi-element arrays , 1999, IEEE J. Sel. Areas Commun..

[15]  John M. Cioffi,et al.  Joint Tx-Rx beamforming design for multicarrier MIMO channels: a unified framework for convex optimization , 2003, IEEE Trans. Signal Process..

[16]  Robert F. H. Fischer,et al.  Dynamics Limited Precoding, Shaping, and Blind Equalization for Fast Digital Transmission over Twisted Pair Lines , 2006, IEEE J. Sel. Areas Commun..

[17]  Andrea J. Goldsmith,et al.  Capacity limits of MIMO channels , 2003, IEEE J. Sel. Areas Commun..

[18]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .