Optimal algorithms for inserting a random element into a random heap

Two algorithms for inserting a random element into a random heap are shown to be optimal (in the sense that they use the least number of comparisons on the average among all comparison-based algorithms) for different values of n under a uniform model.

[1]  Gaston H. Gonnet,et al.  Heaps on Heaps , 1982, SIAM J. Comput..

[2]  Eugene S. Schwartz,et al.  Generating a canonical prefix encoding , 1964, CACM.

[3]  Kurt Mehlhorn,et al.  CHAPTER 6 – Data Structures , 1990 .

[4]  Thomas Porter,et al.  Random insertion into a priority queue structure , 1974, IEEE Transactions on Software Engineering.

[5]  Pierre A. Humblet,et al.  Optimal source coding for a class of integer alphabets (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[6]  Ernst-Erich Doberkat,et al.  Inserting a new element into a heap , 1981, BIT.

[7]  Te Sun Han,et al.  Huffman coding with an infinite alphabet , 1996, IEEE Trans. Inf. Theory.

[8]  Julia Abrahams Huffman-type codes for infinite source distributions , 1994 .

[9]  H. Noltemeier Dynamic Partial Orders and Generalized Heaps , 1990 .

[10]  Hosam M. Mahmoud,et al.  Evolution of random search trees , 1991, Wiley-Interscience series in discrete mathematics and optimization.

[11]  Julia Abrahams,et al.  On the redundancy of optimal binary prefix-condition codes for finite and infinite sources , 1987, IEEE Trans. Inf. Theory.

[12]  Michael Gutman Fixed-prefix encoding of the integers can be Huffman-optimal , 1990, IEEE Trans. Inf. Theory.

[13]  L. Goddard Information Theory , 1962, Nature.

[14]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[15]  Matti Jakobsson Huffman Coding in Bit-Vector Compression , 1978, Inf. Process. Lett..

[16]  David C. van Voorhis,et al.  Optimal source codes for geometrically distributed integer alphabets (Corresp.) , 1975, IEEE Trans. Inf. Theory.