Statistical-Numerical Analysis for Pullout Tests of Ground Anchors

The paper presents an application of statistical and numerical methods for the determination of the force-displacement curves and that of pullout capacity of prestressed grouted ground anchors installed in Miocene clay. A regression analysis of data from a database of acceptance test records for ground anchors to create has been performed, the force-displacement curve of the tested anchor corresponding to the range of loads applied for acceptance tests has been created. A linear regression model, employing the weighted least squares method and robust standard errors techniques were concluded to serve as a reliable statistical method suitable for achieving this goal. The discovered linear regression dependence then served as a lower control limit for the displacement values calculated at the anchor head applying the numerical model. A finite element model has been created to predict the behaviour of ground anchors being installed in fine-grained soils. The developed numerical model that employs Mohr-Coulomb strength criterion constitutive model evaluates the influence of high-pressure grouting by development additional radial stresses and that of an increment of fixed length diameter.